

AWS Chalice

AWS Chalice allows you to quickly create and
deploy applications that use Amazon API Gateway and AWS Lambda.
It provides:

	A command line tool for creating, deploying, and managing your app

	A familiar and easy to use API for declaring views in python code

	Automatic IAM policy generation

$ pip install chalice
$ chalice new-project helloworld && cd helloworld
$ cat app.py

from chalice import Chalice

app = Chalice(app_name="helloworld")

@app.route("/")
def index():
 return {"hello": "world"}

$ chalice deploy
...
https://endpoint/dev

$ curl https://endpoint/api
{"hello": "world"}

Up and running in less than 30 seconds.

Getting Started

	Quickstart and Tutorial
	Credentials

	Creating Your Project

	Deploying

	Next Steps

	Tutorial: URL Parameters

	Tutorial: Error Messages

	Tutorial: Additional Routing

	Tutorial: Request Metadata

	Tutorial: Request Content Types

	Tutorial: Customizing the HTTP Response

	Tutorial: GZIP compression for json

	Tutorial: CORS Support

	Tutorial: Policy Generation
	Manually Providing Policies

	Experimental Status

	Tutorial: Using Custom Authentication
	API Key

	Using AWS IAM

	Using Amazon Cognito User Pools

	Using Custom Authorizers

	Tutorial: Local Mode

	Deleting Your App

Topics

	Routing
	Other Request Metadata

	Views
	View Function Parameters

	View Function Return Values

	Error Handling

	Specifying HTTP Methods

	Binary Content

	Usage Recommendations

	Configuration File
	Stage Specific Configuration

	Lambda Specific Configuration

	Examples

	Multifile Support

	Logging
	Examples

	SDK Generation
	Example

	Chalice Stages
	Example

	App Packaging
	App Directories

	3rd Party Packages

	Examples

	Cryptography Example

	Python Version Support

	Changing Python Runtime Versions

	AWS CloudFormation Support
	Considerations

	Example

	Authorization
	AWS IAM Authorizer

	Amazon Cognito User Pools

	Custom Authorizers

	Built-in Authorizers

	Lambda Event Sources
	Scheduled Events

	S3 Events

	SNS Events

	SQS Events

	Pure Lambda Functions

	Blueprints
	Example

	Blueprint Registration

	Advanced Example

	Continuous Deployment (CD)
	Usage example

	CodeCommit repository

	CodePipeline

	CodeBuild build script

	Deploying to beta stage

	Extending

	Experimental APIs
	Opting-in to Experimental APIs

	List of Experimental APIs

API Reference

	Chalice

	Request

	Response

	Authorization
	Built-in Authorizers

	APIGateway

	CORS

	Event Sources

	Blueprints

Upgrade Notes

	Upgrade Notes
	1.2.0

	1.0.0b2

	1.0.0b1

	0.9.0

	0.8.1

	0.7.0

	0.6.0

Indices and tables

	Index

	Search Page

Quickstart and Tutorial

In this tutorial, you’ll use the chalice command line utility
to create and deploy a basic REST API.
First, you’ll need to install chalice. Using a virtualenv
is recommended:

$ pip install virtualenv
$ virtualenv ~/.virtualenvs/chalice-demo
$ source ~/.virtualenvs/chalice-demo/bin/activate

Note: make sure you are using python2.7, python3.6, or python3.7.
These are the only python versions currently supported by AWS Lambda so they
are also the only versions supported by the chalice CLI and chalice
python package. You can find the latest versions of python on the
Python download page [https://www.python.org/downloads/]. You can check
the version of python in your virtualenv by
running:

Double check you have a supported python version in your virtualenv
$ python -V

Next, in your virtualenv, install chalice:

$ pip install chalice

You can verify you have chalice installed by running:

$ chalice --help
Usage: chalice [OPTIONS] COMMAND [ARGS]...
...

Credentials

Before you can deploy an application, be sure you have
credentials configured. If you have previously configured your
machine to run boto3 (the AWS SDK for Python) or the AWS CLI then
you can skip this section.

If this is your first time configuring credentials for AWS you
can follow these steps to quickly get started:

$ mkdir ~/.aws
$ cat >> ~/.aws/config
[default]
aws_access_key_id=YOUR_ACCESS_KEY_HERE
aws_secret_access_key=YOUR_SECRET_ACCESS_KEY
region=YOUR_REGION (such as us-west-2, us-west-1, etc)

If you want more information on all the supported methods for
configuring credentials, see the
boto3 docs [http://boto3.readthedocs.io/en/latest/guide/configuration.html].

Creating Your Project

The next thing we’ll do is use the chalice command to create a new
project:

$ chalice new-project helloworld

This will create a helloworld directory. Cd into this
directory. You’ll see several files have been created for you:

$ cd helloworld
$ ls -la
drwxr-xr-x .chalice
-rw-r--r-- app.py
-rw-r--r-- requirements.txt

You can ignore the .chalice directory for now, the two main files
we’ll focus on is app.py and requirements.txt.

Let’s take a look at the app.py file:

from chalice import Chalice

app = Chalice(app_name='helloworld')

@app.route('/')
def index():
 return {'hello': 'world'}

The new-project command created a sample app that defines a
single view, /, that when called will return the JSON body
{"hello": "world"}.

Deploying

Let’s deploy this app. Make sure you’re in the helloworld
directory and run chalice deploy:

$ chalice deploy
...
Initiating first time deployment...
https://qxea58oupc.execute-api.us-west-2.amazonaws.com/api/

You now have an API up and running using API Gateway and Lambda:

$ curl https://qxea58oupc.execute-api.us-west-2.amazonaws.com/api/
{"hello": "world"}

Try making a change to the returned dictionary from the index()
function. You can then redeploy your changes by running chalice deploy.

For the rest of these tutorials, we’ll be using httpie instead of curl
(https://github.com/jakubroztocil/httpie) to test our API. You can install
httpie using pip install httpie, or if you’re on Mac, you can run
brew install httpie. The Github link has more information on installation
instructions. Here’s an example of using httpie to request the root
resource of the API we just created. Note that the command name is http:

$ http https://qxea58oupc.execute-api.us-west-2.amazonaws.com/api/
HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 18
Content-Type: application/json
Date: Mon, 30 May 2016 17:55:50 GMT
X-Cache: Miss from cloudfront

{
 "hello": "world"
}

Additionally, the API Gateway endpoints will be shortened to
https://endpoint/api/ for brevity. Be sure to substitute
https://endpoint/api/ for the actual endpoint that the chalice
CLI displays when you deploy your API (it will look something like
https://abcdefg.execute-api.us-west-2.amazonaws.com/api/.

Next Steps

You’ve now created your first app using chalice.

The next few sections will build on this quickstart section and introduce
you to additional features including: URL parameter capturing,
error handling, advanced routing, current request metadata, and automatic
policy generation.

Tutorial: URL Parameters

Now we’re going to make a few changes to our app.py file that
demonstrate additional capabilities provided by the python serverless
microframework for AWS.

Our application so far has a single view that allows you to make
an HTTP GET request to /. Now let’s suppose we want to capture
parts of the URI:

from chalice import Chalice

app = Chalice(app_name='helloworld')

CITIES_TO_STATE = {
 'seattle': 'WA',
 'portland': 'OR',
}

@app.route('/')
def index():
 return {'hello': 'world'}

@app.route('/cities/{city}')
def state_of_city(city):
 return {'state': CITIES_TO_STATE[city]}

In the example above, we’ve now added a state_of_city view that allows
a user to specify a city name. The view function takes the city
name and returns name of the state the city is in. Notice that the
@app.route decorator has a URL pattern of /cities/{city}. This
means that the value of {city} is captured and passed to the view
function. You can also see that the state_of_city takes a single
argument. This argument is the name of the city provided by the user.
For example:

GET /cities/seattle --> state_of_city('seattle')
GET /cities/portland --> state_of_city('portland')

Now that we’ve updated our app.py file with this new view function,
let’s redeploy our application. You can run chalice deploy from
the helloworld directory and it will deploy your application:

$ chalice deploy

Let’s try it out. Note the examples below use the http command
from the httpie package. You can install this using pip install httpie:

$ http https://endpoint/api/cities/seattle
HTTP/1.1 200 OK

{
 "state": "WA"
}

$ http https://endpoint/api/cities/portland
HTTP/1.1 200 OK

{
 "state": "OR"
}

Notice what happens if we try to request a city that’s not in our
CITIES_TO_STATE map:

$ http https://endpoint/api/cities/vancouver
HTTP/1.1 500 Internal Server Error
Content-Type: application/json
X-Cache: Error from cloudfront

{
 "Code": "ChaliceViewError",
 "Message": "ChaliceViewError: An internal server error occurred."
}

In the next section, we’ll see how to fix this and provide better
error messages.

Tutorial: Error Messages

In the example above, you’ll notice that when our app raised
an uncaught exception, a 500 internal server error was returned.

In this section, we’re going to show how you can debug and improve
these error messages.

The first thing we’re going to look at is how we can debug this
issue. By default, debugging is turned off, but you can
enable debugging to get more information:

from chalice import Chalice

app = Chalice(app_name='helloworld')
app.debug = True

The app.debug = True enables debugging for your app.
Save this file and redeploy your changes:

$ chalice deploy
...
https://endpoint/api/

Now, when you request the same URL that returned an internal
server error, you’ll get back the original stack trace:

$ http https://endpoint/api/cities/vancouver
Traceback (most recent call last):
 File "/var/task/chalice/app.py", line 304, in _get_view_function_response
 response = view_function(*function_args)
 File "/var/task/app.py", line 18, in state_of_city
 return {'state': CITIES_TO_STATE[city]}
KeyError: u'vancouver'

We can see that the error is caused from an uncaught KeyError resulting
from trying to access the vancouver key.

Now that we know the error, we can fix our code. What we’d like to do is
catch this exception and instead return a more helpful error message
to the user. Here’s the updated code:

from chalice import BadRequestError

@app.route('/cities/{city}')
def state_of_city(city):
 try:
 return {'state': CITIES_TO_STATE[city]}
 except KeyError:
 raise BadRequestError("Unknown city '%s', valid choices are: %s" % (
 city, ', '.join(CITIES_TO_STATE.keys())))

Save and deploy these changes:

$ chalice deploy
$ http https://endpoint/api/cities/vancouver
HTTP/1.1 400 Bad Request

{
 "Code": "BadRequestError",
 "Message": "Unknown city 'vancouver', valid choices are: portland, seattle"
}

We can see now that we have received a Code and Message key, with the message
being the value we passed to BadRequestError. Whenever you raise
a BadRequestError from your view function, the framework will return an
HTTP status code of 400 along with a JSON body with a Code and Message.
There are a few additional exceptions you can raise from your python code:

* BadRequestError - return a status code of 400
* UnauthorizedError - return a status code of 401
* ForbiddenError - return a status code of 403
* NotFoundError - return a status code of 404
* ConflictError - return a status code of 409
* UnprocessableEntityError - return a status code of 422
* TooManyRequestsError - return a status code of 429
* ChaliceViewError - return a status code of 500

You can import these directly from the chalice package:

from chalice import UnauthorizedError

Tutorial: Additional Routing

So far, our examples have only allowed GET requests.
It’s actually possible to support additional HTTP methods.
Here’s an example of a view function that supports PUT:

@app.route('/resource/{value}', methods=['PUT'])
def put_test(value):
 return {"value": value}

We can test this method using the http command:

$ http PUT https://endpoint/api/resource/foo
HTTP/1.1 200 OK

{
 "value": "foo"
}

Note that the methods kwarg accepts a list of methods. Your view function
will be called when any of the HTTP methods you specify are used for the
specified resource. For example:

@app.route('/myview', methods=['POST', 'PUT'])
def myview():
 pass

The above view function will be called when either an HTTP POST or
PUT is sent to /myview.

Alternatively if you do not want to share the same view function across
multiple HTTP methods for the same route url, you may define separate view
functions to the same route url but have the view functions differ by
HTTP method. For example:

@app.route('/myview', methods=['POST'])
def myview_post():
 pass

@app.route('/myview', methods=['PUT'])
def myview_put():
 pass

This setup will route all HTTP POST’s to /myview to the myview_post()
view function and route all HTTP PUT’s to /myview to the myview_put()
view function. It is also important to note that the view functions
must have unique names. For example, both view functions cannot be
named myview().

In the next section we’ll go over how you can introspect the given request
in order to differentiate between various HTTP methods.

Tutorial: Request Metadata

In the examples above, you saw how to create a view function that supports
an HTTP PUT request as well as a view function that supports both POST and
PUT via the same view function. However, there’s more information we
might need about a given request:

	In a PUT/POST, you frequently send a request body. We need some
way of accessing the contents of the request body.

	For view functions that support multiple HTTP methods, we’d like
to detect which HTTP method was used so we can have different
code paths for PUTs vs. POSTs.

All of this and more is handled by the current request object that the
chalice library makes available to each view function when it’s called.

Let’s see an example of this. Suppose we want to create a view function
that allowed you to PUT data to an object and retrieve that data
via a corresponding GET. We could accomplish that with the
following view function:

from chalice import NotFoundError

OBJECTS = {
}

@app.route('/objects/{key}', methods=['GET', 'PUT'])
def myobject(key):
 request = app.current_request
 if request.method == 'PUT':
 OBJECTS[key] = request.json_body
 elif request.method == 'GET':
 try:
 return {key: OBJECTS[key]}
 except KeyError:
 raise NotFoundError(key)

Save this in your app.py file and rerun chalice deploy.
Now, you can make a PUT request to /objects/your-key with a request
body, and retrieve the value of that body by making a subsequent
GET request to the same resource. Here’s an example of its usage:

First, trying to retrieve the key will return a 404.
$ http GET https://endpoint/api/objects/mykey
HTTP/1.1 404 Not Found

{
 "Code": "NotFoundError",
 "Message": "mykey"
}

Next, we'll create that key by sending a PUT request.
$ echo '{"foo": "bar"}' | http PUT https://endpoint/api/objects/mykey
HTTP/1.1 200 OK

null

And now we no longer get a 404, we instead get the value we previously
put.
$ http GET https://endpoint/api/objects/mykey
HTTP/1.1 200 OK

{
 "mykey": {
 "foo": "bar"
 }
}

You might see a problem with storing the objects in a module level
OBJECTS variable. We address this in the next section.

The app.current_request object also has the following properties.

	current_request.query_params - A dict of the query params for the request.

	current_request.headers - A dict of the request headers.

	current_request.uri_params - A dict of the captured URI params.

	current_request.method - The HTTP method (as a string).

	current_request.json_body - The parsed JSON body (json.loads(raw_body))

	current_request.raw_body - The raw HTTP body as bytes.

	current_request.context - A dict of additional context information

	current_request.stage_vars - Configuration for the API Gateway stage

Don’t worry about the context and stage_vars for now. We haven’t
discussed those concepts yet. The current_request object also
has a to_dict method, which returns all the information about the
current request as a dictionary. Let’s use this method to write a view
function that returns everything it knows about the request:

@app.route('/introspect')
def introspect():
 return app.current_request.to_dict()

Save this to your app.py file and redeploy with chalice deploy.
Here’s an example of hitting the /introspect URL. Note how we’re
sending a query string as well as a custom X-TestHeader header:

$ http 'https://endpoint/api/introspect?query1=value1&query2=value2' 'X-TestHeader: Foo'
HTTP/1.1 200 OK

{
 "context": {
 "apiId": "apiId",
 "httpMethod": "GET",
 "identity": {
 "accessKey": null,
 "accountId": null,
 "apiKey": null,
 "caller": null,
 "cognitoAuthenticationProvider": null,
 "cognitoAuthenticationType": null,
 "cognitoIdentityId": null,
 "cognitoIdentityPoolId": null,
 "sourceIp": "1.1.1.1",
 "userAgent": "HTTPie/0.9.3",
 "userArn": null
 },
 "requestId": "request-id",
 "resourceId": "resourceId",
 "resourcePath": "/introspect",
 "stage": "dev"
 },
 "headers": {
 "accept": "*/*",
 ...
 "x-testheader": "Foo"
 },
 "method": "GET",
 "query_params": {
 "query1": "value1",
 "query2": "value2"
 },
 "raw_body": null,
 "stage_vars": null,
 "uri_params": null
}

Tutorial: Request Content Types

The default behavior of a view function supports
a request body of application/json. When a request is
made with a Content-Type of application/json, the
app.current_request.json_body attribute is automatically
set for you. This value is the parsed JSON body.

You can also configure a view function to support other
content types. You can do this by specifying the
content_types parameter value to your app.route
function. This parameter is a list of acceptable content
types. Here’s an example of this feature:

import sys

from chalice import Chalice
if sys.version_info[0] == 3:
 # Python 3 imports.
 from urllib.parse import urlparse, parse_qs
else:
 # Python 2 imports.
 from urlparse import urlparse, parse_qs

app = Chalice(app_name='helloworld')

@app.route('/', methods=['POST'],
 content_types=['application/x-www-form-urlencoded'])
def index():
 parsed = parse_qs(app.current_request.raw_body.decode())
 return {
 'states': parsed.get('states', [])
 }

There’s a few things worth noting in this view function.
First, we’ve specified that we only accept the
application/x-www-form-urlencoded content type. If we
try to send a request with application/json, we’ll now
get a 415 Unsupported Media Type response:

$ http POST https://endpoint/api/ states=WA states=CA --debug
...
>>> requests.request(**{'allow_redirects': False,
 'headers': {'Accept': 'application/json',
 'Content-Type': 'application/json',
...

HTTP/1.1 415 Unsupported Media Type

{
 "message": "Unsupported Media Type"
}

If we use the --form argument, we can see the
expected behavior of this view function because httpie sets the
Content-Type header to application/x-www-form-urlencoded:

$ http --form POST https://endpoint/api/formtest states=WA states=CA --debug
...
>>> requests.request(**{'allow_redirects': False,
 'headers': {'Content-Type': 'application/x-www-form-urlencoded; charset=utf-8',
...

HTTP/1.1 200 OK
{
 "states": [
 "WA",
 "CA"
]
}

The second thing worth noting is that app.current_request.json_body
is only available for the application/json content type.
In our example above, we used app.current_request.raw_body to access
the raw body bytes:

parsed = parse_qs(app.current_request.raw_body)

app.current_request.json_body is set to None whenever the
Content-Type is not application/json. This means that
you will need to use app.current_request.raw_body and parse
the request body as needed.

Tutorial: Customizing the HTTP Response

The return value from a chalice view function is serialized as JSON as the
response body returned back to the caller. This makes it easy to create
rest APIs that return JSON response bodies.

Chalice allows you to control this behavior by returning an instance of
a chalice specific Response class. This behavior allows you to:

	Specify the status code to return

	Specify custom headers to add to the response

	Specify response bodies that are not application/json

Here’s an example of this:

from chalice import Chalice, Response

app = Chalice(app_name='custom-response')

@app.route('/')
def index():
 return Response(body='hello world!',
 status_code=200,
 headers={'Content-Type': 'text/plain'})

This will result in a plain text response body:

$ http https://endpoint/api/
HTTP/1.1 200 OK
Content-Length: 12
Content-Type: text/plain

hello world!

Tutorial: GZIP compression for json

The return value from a chalice view function is serialized as JSON as the
response body returned back to the caller. This makes it easy to create
rest APIs that return JSON response bodies.

Chalice allows you to control this behavior by returning an instance of
a chalice specific Response class. This behavior allows you to:

	Add application/json to binary_types

	Specify the status code to return

	Specify custom header Content-Type: application/json

	Specify custom header Content-Encoding: gzip

Here’s an example of this:

import json
import gzip
from chalice import Chalice, Response

app = Chalice(app_name='compress-response')
app.api.binary_types.append('application/json')

@app.route('/')
def index():
 blob = json.dumps({'hello': 'world'}).encode('utf-8')
 payload = gzip.compress(blob)
 custom_headers = {
 'Content-Type': 'application/json',
 'Content-Encoding': 'gzip'
 }
 return Response(body=payload,
 status_code=200,
 headers=custom_headers)

Tutorial: CORS Support

You can specify whether a view supports CORS by adding the
cors=True parameter to your @app.route() call. By
default this value is false:

@app.route('/supports-cors', methods=['PUT'], cors=True)
def supports_cors():
 return {}

Settings cors=True has similar behavior to enabling CORS
using the AWS Console. This includes:

	Injecting the Access-Control-Allow-Origin: * header to your
responses, including all error responses you can return.

	Automatically adding an OPTIONS method to support preflighting
requests.

The preflight request will return a response that includes:

	Access-Control-Allow-Origin: *

	The Access-Control-Allow-Methods header will return a list of all HTTP
methods you’ve called out in your view function. In the example above,
this will be PUT,OPTIONS.

	Access-Control-Allow-Headers: Content-Type,X-Amz-Date,Authorization,
X-Api-Key,X-Amz-Security-Token.

If more fine grained control of the CORS headers is desired, set the cors
parameter to an instance of CORSConfig instead of True. The
CORSConfig object can be imported from from the chalice package it’s
constructor takes the following keyword arguments that map to CORS headers:

	Argument

	Type

	Header

	allow_origin

	str

	Access-Control-Allow-Origin

	allow_headers

	list

	Access-Control-Allow-Headers

	expose_headers

	list

	Access-Control-Expose-Headers

	max_age

	int

	Access-Control-Max-Age

	allow_credentials

	bool

	Access-Control-Allow-Credentials

Code sample defining more CORS headers:

from chalice import CORSConfig
cors_config = CORSConfig(
 allow_origin='https://foo.example.com',
 allow_headers=['X-Special-Header'],
 max_age=600,
 expose_headers=['X-Special-Header'],
 allow_credentials=True
)
@app.route('/custom_cors', methods=['GET'], cors=cors_config)
def supports_custom_cors():
 return {'cors': True}

There’s a couple of things to keep in mind when enabling cors for a view:

	An OPTIONS method for preflighting is always injected. Ensure that
you don’t have OPTIONS in the methods=[...] list of your
view function.

	Even though the Access-Control-Allow-Origin header can be set to a
string that is a space separated list of origins, this behavior does not
work on all clients that implement CORS. You should only supply a single
origin to the CORSConfig object. If you need to supply multiple origins
you will need to define a custom handler for it that accepts OPTIONS
requests and matches the Origin header against a whitelist of origins.
If the match is successful then return just their Origin back to them
in the Access-Control-Allow-Origin header.

Example:

from chalice import Chalice, Response

app = Chalice(app_name='multipleorigincors')

_ALLOWED_ORIGINS = set([
 'http://allowed1.example.com',
 'http://allowed2.example.com',
])

@app.route('/cors_multiple_origins', methods=['GET', 'OPTIONS'])
def supports_cors_multiple_origins():
 method = app.current_request.method
 if method == 'OPTIONS':
 headers = {
 'Access-Control-Allow-Method': 'GET,OPTIONS',
 'Access-Control-Allow-Origin': ','.join(_ALLOWED_ORIGINS),
 'Access-Control-Allow-Headers': 'X-Some-Header',
 }
 origin = app.current_request.headers.get('origin', '')
 if origin in _ALLOWED_ORIGINS:
 headers.update({'Access-Control-Allow-Origin': origin})
 return Response(
 body=None,
 headers=headers,
)
 elif method == 'GET':
 return 'Foo'

	Every view function must explicitly enable CORS support.

The last point will change in the future. See
this issue [https://github.com/aws/chalice/issues/70#issuecomment-248787037]
for more information.

Tutorial: Policy Generation

In the previous section we created a basic rest API that
allowed you to store JSON objects by sending the JSON
in the body of an HTTP PUT request to /objects/{name}.
You could then retrieve objects by sending a GET request to
/objects/{name}.

However, there’s a problem with the code we wrote:

OBJECTS = {
}

@app.route('/objects/{key}', methods=['GET', 'PUT'])
def myobject(key):
 request = app.current_request
 if request.method == 'PUT':
 OBJECTS[key] = request.json_body
 elif request.method == 'GET':
 try:
 return {key: OBJECTS[key]}
 except KeyError:
 raise NotFoundError(key)

We’re storing the key value pairs in a module level OBJECTS
variable. We can’t rely on local storage like this persisting
across requests.

A better solution would be to store this information in Amazon S3.
To do this, we’re going to use boto3, the AWS SDK for Python.
First, install boto3:

$ pip install boto3

Next, add boto3 to your requirements.txt file:

$ echo 'boto3==1.3.1' >> requirements.txt

The requirements.txt file should be in the same directory that contains
your app.py file. Next, let’s update our view code to use boto3:

import json
import boto3
from botocore.exceptions import ClientError

from chalice import NotFoundError

S3 = boto3.client('s3', region_name='us-west-2')
BUCKET = 'your-bucket-name'

@app.route('/objects/{key}', methods=['GET', 'PUT'])
def s3objects(key):
 request = app.current_request
 if request.method == 'PUT':
 S3.put_object(Bucket=BUCKET, Key=key,
 Body=json.dumps(request.json_body))
 elif request.method == 'GET':
 try:
 response = S3.get_object(Bucket=BUCKET, Key=key)
 return json.loads(response['Body'].read())
 except ClientError as e:
 raise NotFoundError(key)

Make sure to change BUCKET with the name of an S3 bucket
you own. Redeploy your changes with chalice deploy.
Now, whenever we make a PUT request to /objects/keyname, the
data send will be stored in S3. Any subsequent GET requests will
retrieve this data from S3.

Manually Providing Policies

IAM permissions can be auto generated, provided manually or can be
pre-created and explicitly configured. To use a
pre-configured IAM role ARN for chalice, add these two keys to your
chalice configuration. Setting manage_iam_role to false tells
Chalice to not attempt to generate policies and create IAM role.

"manage_iam_role":false
"iam_role_arn":"arn:aws:iam::<account-id>:role/<role-name>"

Whenever your application is deployed using chalice, the
auto generated policy is written to disk at
<projectdir>/.chalice/policy.json. When you run the
chalice deploy command, you can also specify the
--no-autogen-policy option. Doing so will result in the
chalice CLI loading the <projectdir>/.chalice/policy.json
file and using that file as the policy for the IAM role.
You can manually edit this file and specify --no-autogen-policy
if you’d like to have full control over what IAM policy to associate
with the IAM role.

You can also run the chalice gen-policy command from your project
directory to print the auto generated policy to stdout. You can
then use this as a starting point for your policy.

$ chalice gen-policy
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:ListAllMyBuckets"
],
 "Resource": [
 "*"
],
 "Effect": "Allow",
 "Sid": "9155de6ad1d74e4c8b1448255770e60c"
 }
]
}

Experimental Status

The automatic policy generation is still in the early stages, it should
be considered experimental. You can always disable policy
generation with --no-autogen-policy for complete control.

Additionally, you will be prompted for confirmation whenever the
auto policy generator detects actions that it would like to add or remove:

$ chalice deploy
Updating IAM policy.

The following action will be added to the execution policy:

s3:ListBucket

Would you like to continue? [Y/n]:

Tutorial: Using Custom Authentication

AWS API Gateway routes can be authenticated in multiple ways:

	API Key

	AWS IAM

	Cognito User Pools

	Custom Auth Handler

API Key

@app.route('/authenticated', methods=['GET'], api_key_required=True)
def authenticated():
 return {"secure": True}

Only requests sent with a valid X-Api-Key header will be accepted.

Using AWS IAM

authorizer = IAMAuthorizer()

@app.route('/iam-role', methods=['GET'], authorizer=authorizer)
def authenticated():
 return {"secure": True}

Using Amazon Cognito User Pools

To integrate with cognito user pools, you can use the
CognitoUserPoolAuthorizer object:

authorizer = CognitoUserPoolAuthorizer(
 'MyPool', header='Authorization',
 provider_arns=['arn:aws:cognito:...:userpool/name'])

@app.route('/user-pools', methods=['GET'], authorizer=authorizer)
def authenticated():
 return {"secure": True}

Note, earlier versions of chalice also have an app.define_authorizer
method as well as an authorizer_name argument on the @app.route(...)
method. This approach is deprecated in favor of CognitoUserPoolAuthorizer
and the authorizer argument in the @app.route(...) method.
app.define_authorizer will be removed in future versions of chalice.

Using Custom Authorizers

To integrate with custom authorizers, you can use the CustomAuthorizer method
on the app object. You’ll need to set the authorizer_uri
to the URI of your lambda function.

authorizer = CustomAuthorizer(
 'MyCustomAuth', header='Authorization',
 authorizer_uri=('arn:aws:apigateway:region:lambda:path/2015-03-31'
 '/functions/arn:aws:lambda:region:account-id:'
 'function:FunctionName/invocations'))

@app.route('/custom-auth', methods=['GET'], authorizer=authorizer)
def authenticated():
 return {"secure": True}

Tutorial: Local Mode

As you develop your application, you may want to experiment locally before
deploying your changes. You can use chalice local to spin up a local
HTTP server you can use for testing.

For example, if we have the following app.py file:

from chalice import Chalice

app = Chalice(app_name='helloworld')

@app.route('/')
def index():
 return {'hello': 'world'}

We can run chalice local to test this API locally:

$ chalice local
Serving on localhost:8000

We can override the port using:

$ chalice local –port=8080

We can now test our API using localhost:8000:

$ http localhost:8000/
HTTP/1.0 200 OK
Content-Length: 18
Content-Type: application/json
Date: Thu, 27 Oct 2016 20:08:43 GMT
Server: BaseHTTP/0.3 Python/2.7.11

{
 "hello": "world"
}

The chalice local command does not assume the
role associated with your lambda function, so you’ll
need to use an AWS_PROFILE that has sufficient permissions
to your AWS resources used in your app.py.

Deleting Your App

You can use the chalice delete command to delete your app.
Similar to the chalice deploy command, you can specify which
chalice stage to delete. By default it will delete the dev stage:

$ chalice delete --stage dev
Deleting Rest API: duvw4kwyl3
Deleting function aws:arn:lambda:region:123456789:helloworld-dev
Deleting IAM Role helloworld-dev

Routing

The Chalice.route() method is used to contruct which routes
you want to create for your API. The concept is the same
mechanism used by Flask [http://flask.pocoo.org/] and
bottle [http://bottlepy.org/docs/dev/index.html].
You decorate a function with @app.route(...), and whenever
a user requests that URL, the function you’ve decorated is called.
For example, suppose you deployed this app:

from chalice import Chalice

app = Chalice(app_name='helloworld')

@app.route('/')
def index():
 return {'view': 'index'}

@app.route('/a')
def a():
 return {'view': 'a'}

@app.route('/b')
def b():
 return {'view': 'b'}

If you go to https://endpoint/, the index() function would be called.
If you went to https://endpoint/a and https://endpoint/b, then the
a() and b() function would be called, respectively.

Note

Do not end your route paths with a trailing slash. If you do this, the
chalice deploy command will raise a validation error.

You can also create a route that captures part of the URL. This captured value
will then be passed in as arguments to your view function:

from chalice import Chalice

app = Chalice(app_name='helloworld')

@app.route('/users/{name}')
def users(name):
 return {'name': name}

If you then go to https://endpoint/users/james, then the view function
will be called as: users('james'). The parameters are passed as
keyword parameters based on the name as they appear in the URL. The argument
names for the view function must match the name of the captured
argument:

from chalice import Chalice

app = Chalice(app_name='helloworld')

@app.route('/a/{first}/b/{second}')
def users(first, second):
 return {'first': first, 'second': second}

Other Request Metadata

The route path can only contain [a-zA-Z0-9._-] chars and curly braces for
parts of the URL you want to capture. You do not need to model other parts of
the request you want to capture, including headers and query strings. Within
a view function, you can introspect the current request using the
app.current_request attribute. This also
means you cannot control the routing based on query strings or headers.
Here’s an example for accessing query string data in a view function:

from chalice import Chalice

app = Chalice(app_name='helloworld')

@app.route('/users/{name}')
def users(name):
 result = {'name': name}
 if app.current_request.query_params.get('include-greeting') == 'true':
 result['greeting'] = 'Hello, %s' % name
 return result

In the function above, if the user provides a ?include-greeting=true in the
HTTP request, then an additional greeting key will be returned:

$ http https://endpoint/api/users/bob

{
 "name": "bob"
}

$ http https://endpoint/api/users/bob?include-greeting=true

{
 "greeting": "Hello, bob",
 "name": "bob"
}

Views

A view function in chalice is the function attached to an
@app.route() decorator. In the example below, index
is the view function:

from chalice import Chalice

app = Chalice(app_name='helloworld')

@app.route('/')
def index():
 return {'view': 'index'}

View Function Parameters

A view function’s parameters correspond to the number of captured
URL parameters specified in the @app.route call. In the example above,
the route / specifies no captured parameters so the index view
function accepts no parameters. However, in the view function below,
a single URL parameter, {city} is specified, so the view function
must accept a single parameter:

from chalice import Chalice

app = Chalice(app_name='helloworld')

@app.route('/cities/{city}')
def index(city):
 return {'city': city}

This indicates that the value of {city} is variable, and whatever
value is provided in the URL is passed to the index view function.
For example:

GET /cities/seattle --> index('seattle')
GET /cities/portland --> index('portland')

If you want to access any other metdata of the incoming HTTP request,
you can use the app.current_request property, which is an instance of
the the Request class.

View Function Return Values

The response returned back to the client depends on the behavior
of the view function. There are several options available:

	Returning an instance of Response. This gives you
complete control over what gets returned back to the customer.

	A bytes type response body must have a Content-Type header value
that is present in the app.api.binary_types list in order to be handled
properly.

	Any other return value will be serialized as JSON and sent back
as the response body with content type application/json.

	Any subclass of ChaliceViewError will result in an HTTP
response being returned with the status code associated with that
response, and a JSON response body containing a Code and a Message.
This is discussed in more detail below.

	Any other exception raised will result in a 500 HTTP response.
The body of that response depends on whether debug mode is enabled.

Error Handling

Chalice provides a built in set of exception classes that map to common
HTTP errors including:

	BadRequestError- returns a status code of 400

	UnauthorizedError- returns a status code of 401

	ForbiddenError- returns a status code of 403

	NotFoundError- returns a status code of 404

	ConflictError- returns a status code of 409

	TooManyRequestsError- returns a status code of 429

	ChaliceViewError- returns a status code of 500

You can raise these anywhere in your view functions and chalice will convert
these to the appropriate HTTP response. The default chalice error responses
will send the error back as application/json with the response body
containing a Code corresponding to the exception class name and a
Message key corresponding to the string provided when the exception
was instantiated. For example:

from chalice import Chalice
from chalice import BadRequestError

app = Chalice(app_name="badrequset")

@app.route('/badrequest')
def badrequest():
 raise BadRequestError("This is a bad request")

This view function will generate the following HTTP response:

$ http https://endpoint/api/badrequest
HTTP/1.1 400 Bad Request

{
 "Code": "BadRequestError",
 "Message": "This is a bad request"
}

In addition to the built in chalice exceptions, you can use the
Response class to customize the HTTP errors if you prefer to
either not have JSON error responses or customize the JSON response body
for errors. For example:

from chalice import Chalice, Response

app = Chalice(app_name="badrequest")

@app.route('/badrequest')
def badrequest():
 return Response(body='Plain text error message',
 headers={'Content-Type': 'text/plain'},
 status_code=400)

Specifying HTTP Methods

So far, our examples have only allowed GET requests. It’s actually possible
to support additional HTTP methods. Here’s an example of a view function that
supports PUT:

@app.route('/resource/{value}', methods=['PUT'])
def put_test(value):
 return {"value": value}

We can test this method using the http command:

$ http PUT https://endpoint/api/resource/foo
HTTP/1.1 200 OK

{
 "value": "foo"
}

Note that the methods kwarg accepts a list of methods. Your view function
will be called when any of the HTTP methods you specify are used for the
specified resource. For example:

@app.route('/myview', methods=['POST', 'PUT'])
def myview():
 pass

The above view function will be called when either an HTTP POST or
PUT is sent to /myview as shown below:

POST /myview --> myview()
PUT /myview --> myview()

Alternatively if you do not want to share the same view function across
multiple HTTP methods for the same route url, you may define separate view
functions to the same route url but have the view functions differ by
HTTP method. For example:

@app.route('/myview', methods=['POST'])
def myview_post():
 pass

@app.route('/myview', methods=['PUT'])
def myview_put():
 pass

This setup will route all HTTP POST’s to /myview to the myview_post()
view function and route all HTTP PUT’s to /myview to the myview_put()
view function as shown below:

POST /myview --> myview_post()
PUT /myview --> myview_put()

If you do chose to use separate view functions for the same route path, it is
important to know:

	View functions that share the same route cannot have the same names.
For example, two view functions that both share the same route path cannot
both be named view().

	View functions that share the same route cannot overlap in supported HTTP
methods. For example if two view function both share the same route path,
they both cannot contain 'PUT' in their route methods list.

	View functions that share the same route path and have CORS configured cannot
have differing CORS configuration. For example, if two view functions that
both share the same route path, the route configuration for one of the
view functions cannot set cors=True while having the route
configuration of the other view function be set to
cors=app.CORSConfig(allow_origin='https://foo.example.com').

Binary Content

Chalice supports binary payloads through its app.api.binary_types list. Any
type in this list is considered a binary Content-Type. Whenever a request
with a Content-Type header is encountered that matches an entry in the
binary_types list, its body will be available as a bytes type on the
property app.current_request.raw_body. Similarly, in order to send binary
data back in a response, simply set your Content-Type header to something
present in the binary_types list. Note that you can override the default
types by modifying the app.api.binary_types list at the module level.

Here is an example app which simply echos back binary content:

from chalice import Chalice, Response

app = Chalice(app_name="binary-response")

@app.route('/bin-echo', methods=['POST'],
 content_types=['application/octet-stream'])
def bin_echo():
 raw_request_body = app.current_request.raw_body
 return Response(body=raw_request_body,
 status_code=200,
 headers={'Content-Type': 'application/octet-stream'})

You can see this app echo back binary data sent to it:

$ echo -n -e "\xFE\xED" | http POST $(chalice url)bin-echo \
 Accept:application/octet-stream Content-Type:application/octet-stream | xxd
0000000: feed ..

Note that both the Accept and Content-Type header are required. If
you fail to set the Content-Type header on the request will result in a
415 UnsupportedMediaType error. Care must be taken when configuring what
content_types a route accepts, they must all be valid binary types, or they
must all be non-binary types. The Accept header must also be set if the
data returned is to be the raw binary, if is omitted the call return a 400
Bad Request response.

For example, here is the same call as above without the Accept header:

$ echo -n -e "\xFE\xED" | http POST $(chalice url)bin-echo \
 Content-Type:application/octet-stream
HTTP/1.1 400 Bad Request
Connection: keep-alive
Content-Length: 270
Content-Type: application/json
Date: Sat, 27 May 2017 07:09:51 GMT

{
 "Code": "BadRequest",
 "Message": "Request did not specify an Accept header with
 application/octet-stream, The response has a Content-Type of
 application/octet-stream. If a response has a binary Content-Type then
 the request must specify an Accept header that matches."
}

Usage Recommendations

If you want to return a JSON response body, just return the corresponding
python types directly. You don’t need to use the Response class.
Chalice will automatically convert this to a JSON HTTP response as a
convenience for you.

Use the Response class when you want to return non-JSON content, or
when you want to inject custom HTTP headers to your response.

For errors, raise the built in ChaliceViewError subclasses (e.g
BadRequestError, NotFoundError, ConflictError etc) when you
want to return a HTTP error response with a preconfigured JSON body containing
a Code and Message.

Use the Response class when you want to customize the error responses
to either return a different JSON error response body, or to return an HTTP
response that’s not application/json.

Configuration File

Whenever you create a new project using
chalice new-project, a .chalice directory is created
for you. In this directory is a config.json file that
you can use to control what happens when you chalice deploy:

$ tree -a
.
├── .chalice
│ └── config.json
├── app.py
└── requirements.txt

1 directory, 3 files

Stage Specific Configuration

As of version 0.7.0 of chalice, you can specify configuration
that is specific to a chalice stage as well as configuration that should
be shared across all stages. See the Chalice Stages doc for more
information about chalice stages.

	stages - This value of this key is a mapping of chalice stage
name to stage configuration. Chalice assumes a default stage name
of dev. If you run the chalice new-project command on
chalice 0.7.0 or higher, this key along with the default dev
key will automatically be created for you. See the examples
section below for some stage specific configurations.

The following config values can either be specified per stage config
or as a top level key which is not tied to a specific key. Whenever
a stage specific configuration value is needed, the stages mapping
is checked first. If no value is found then the top level keys will
be checked.

	api_gateway_stage - The name of the API gateway stage. This
will also be the URL prefix for your API
(https://endpoint/prefix/your-api).

	manage_iam_role - true/false. Indicates if you
want chalice to create and update the IAM role
used for your application. By default, this value is true.
However, if you have a pre-existing role you’ve created, you
can set this value to false and a role will not be created
or updated.
"manage_iam_role": false means that you are responsible for
managing the role and any associated policies associated with
that role. If this value is false you must specify
an iam_role_arn, otherwise an error is raised when you
try to run chalice deploy.

	iam_role_arn - If manage_iam_role is false, you
must specify this value that indicates which IAM role arn to
use when configuration your application. This value is only
used if manage_iam_role is false.

	autogen_policy - A boolean value that indicates if chalice
should try to automatically generate an IAM policy based on
analyzing your application source code. The default value is
true. If this value is false then chalice will load
try to a local file in .chalice/policy-<stage-name>.json
instead of auto-generating a policy from source code analysis.

	iam_policy_file - When autogen_policy is false, chalice
will try to load an IAM policy from disk instead of auto-generating
one based on source code analysis. The default location of this
file is .chalice/policy-<stage-name>.json, e.g
.chalice/policy-dev.json, .chalice/policy-prod.json, etc.
You can change the filename by providing this iam_policy_file
config option. This filename is relative to the .chalice
directory.

	environment_variables - A mapping of key value pairs. These
key value pairs will be set as environment variables in your
application. All environment variables must be strings.
If this key is specified in both a stage specific config option
as well as a top level key, the stage specific environment
variables will be merged into the top level keys. See the
examples section below for a concrete example.

	lambda_timeout - An integer representing the function execution time,
in seconds, at which AWS Lambda should terminate the function. The
default lambda_timeout is 60 seconds.

	lambda_memory_size - An integer representing the amount of memory, in
MB, your Lambda function is given. AWS Lambda uses this memory size
to infer the amount of CPU allocated to your function. The default
lambda_memory_size value is 128. The value must be a multiple of
64 MB.

	tags - A mapping of key value pairs. These key value pairs will
be set as the tags on the resources running your deployed
application. All tag keys and values must be strings. Similar to
environment_variables, if a key is specified in both a stage
specific config option as well as a top level key, the stage specific
tags will be merged into the top level keys. By default, all chalice
deployed resources are tagged with the key 'aws-chalice' whose
value is 'version={chalice-version}:stage={stage-name}:app={app-name}'.
Currently only the following chalice deployed resources are tagged:
Lambda functions.

	subnet_ids - A list of subnet ids for VPC configuration. This
value can be provided per stage as well as per Lambda function.
In order for this value to take effect, you must also provide the
security_group_ids value. When both values are provided and
autogen_policy is True, chalice will automatically update your
IAM role with the necessary permissions to create, describe, and delete
ENIs. If you are managing the IAM role policy yourself, make sure
to update your permissions accordingly, as described in the
AWS Lambda VPC documentation [https://docs.aws.amazon.com/lambda/latest/dg/vpc.html#vpc-configuring].

	security_group_ids - A list of security groups for VPC configuration.
This value can be provided per stage as well as per Lambda function.
In order for this value to take effect, you must also provide the
subnet_ids value.

	reserved_concurrency - An integer representing each function’s reserved
concurrency. This value can be provided per stage as well as per Lambda
function. AWS Lambda reserves this value of concurrency to each lambda
deployed in this stage. If the value is set to 0, invocations to this
function are blocked. If the value is unset, there will be no reserved
concurrency allocations. For more information, see AWS Documentation on
managing concurrency [https://docs.aws.amazon.com/lambda/latest/dg/concurrent-executions.html].

Lambda Specific Configuration

In addition to a chalice stage, there are also some configuration values
that can be specified per Lambda function. A chalice app can have many
stages, and a stage can have many Lambda functions. To configure
per lambda configuration, you add a lambda_functions key in your
stage configuration:

{
 "version": "2.0",
 "app_name": "app",
 "stages": {
 "dev": {
 "lambda_functions": {
 "foo": {
 "lambda_timeout": 120
 }
 }
 }
 }
}

Each key in the lambda_functions dictionary is the name of a Lambda
function in your app. The value is a dictionary of configuration that
will be applied to that function. These are the configuration options
that can be applied per function:

	iam_policy_file

	lambda_memory_size

	lambda_timeout

	iam_role_arn

	manage_iam_role

	autogen_policy

	environment_variables

	tags

	subnet_ids

	security_group_ids

	reserved_concurrency

See the Stage Specific Configuration section above for a description
of these config options.

Examples

Below are examples that show how you can configure your chalice app.

IAM Roles and Policies

Here’s an example for configuring IAM policies across stages:

{
 "version": "2.0",
 "app_name": "app",
 "stages": {
 "dev": {
 "autogen_policy": true,
 "api_gateway_stage": "dev"
 },
 "beta": {
 "autogen_policy": false,
 "iam_policy_file": "beta-app-policy.json"
 },
 "prod": {
 "manage_iam_role": false,
 "iam_role_arn": "arn:aws:iam::...:role/prod-role"
 }
 }
}

In this config file we’re specifying three stages, dev, beta,
and prod. In the dev stage, chalice will automatically
generate an IAM policy based on analyzing the application source code.
For the beta stage, chalice will load the
.chalice/beta-app-policy.json file and use it as the policy to
associate with the IAM role for that stage. In the prod stage,
chalice won’t modify any IAM roles. It will just set the IAM role
for the Lambda function to be arn:aws:iam::...:role/prod-role.

Here’s an example that show config precedence:

{
 "version": "2.0",
 "app_name": "app",
 "api_gateway_stage": "api",
 "stages": {
 "dev": {
 },
 "beta": {
 },
 "prod": {
 "api_gateway_stage": "prod",
 "manage_iam_role": false,
 "iam_role_arn": "arn:aws:iam::...:role/prod-role"
 }
 }
}

In this config file, both the dev and beta stage will
have an API gateway stage name of api because they will
default to the top level api_gateway_stage key.
However, the prod stage will have an API gateway stage
name of prod because the api_gateway_stage is specified
in {"stages": {"prod": ...}} mapping.

Environment Variables

In the following example, environment variables are specified
both as top level keys as well as per stage. This allows us to
provide environment variables that all stages should have as well
as stage specific environment variables:

{
 "version": "2.0",
 "app_name": "app",
 "environment_variables": {
 "SHARED_CONFIG": "foo",
 "OTHER_CONFIG": "from-top"
 },
 "stages": {
 "dev": {
 "environment_variables": {
 "TABLE_NAME": "dev-table",
 "OTHER_CONFIG": "dev-value"
 }
 },
 "prod": {
 "environment_variables": {
 "TABLE_NAME": "prod-table",
 "OTHER_CONFIG": "prod-value"
 }
 }
 }
}

For the above config, the dev stage will have the
following environment variables set:

{
 "SHARED_CONFIG": "foo",
 "TABLE_NAME": "dev-table",
 "OTHER_CONFIG": "dev-value",
}

The prod stage will have these environment variables set:

{
 "SHARED_CONFIG": "foo",
 "TABLE_NAME": "prod-table",
 "OTHER_CONFIG": "prod-value",
}

Per Lambda Examples

Suppose we had the following chalice app:

from chalice import Chalice

app = Chalice(app_name='demo')

@app.lambda_function()
def foo(event, context):
 pass

@app.lambda_function()
def bar(event, context):
 pass

Given these two functions, we’d like to configure the functions
as follows:

	Both functions should have an environment variable OWNER with value
dev-team.

	The foo function should have an autogenerated IAM policy managed by
chalice.

	The foo function should be run in a VPC with subnet ids sn-1 and
sn-2, with security groups sg-10 and sg-11. Chalice should
also automatically configure the IAM policy with permissions to modify
EC2 network interfaces.

	The bar function should use a pre-existing IAM role that was created
outside of chalice. Chalice should not perform an IAM role management for
the bar function.

	The bar function should have an environment variable TABLE_NAME with
value mytable.

We can accomplish all this with this config file:

{
 "stages": {
 "dev": {
 "environment_variables": {
 "OWNER": "dev-team"
 }
 "api_gateway_stage": "api",
 "lambda_functions": {
 "foo": {
 "subnet_ids": ["sn-1", "sn-2"],
 "security_group_ids": ["sg-10", "sg-11"],
 },
 "bar": {
 "manage_iam_role": false,
 "iam_role_arn": "arn:aws:iam::my-role-name",
 "environment_variables": {"TABLE_NAME": "mytable"}
 }
 }
 }
 },
 "version": "2.0",
 "app_name": "demo"
}

Multifile Support

The app.py file contains all of your view functions and route
information, but you don’t have to keep all of your application
code in your app.py file.

As your application grows, you may reach out a point where you’d
prefer to structure your application in multiple files.
You can create a chalicelib/ directory, and anything
in that directory is recursively included in the deployment
package. This means that you can have files besides just
.py files in chalicelib/, including .json files
for config, or any kind of binary assets.

Let’s take a look at a few examples.

Consider the following app directory structure layout:

.
├── app.py
├── chalicelib
│ └── __init__.py
└── requirements.txt

Where chalicelib/__init__.py contains:

MESSAGE = 'world'

and the app.py file contains:

	1
2
3
4
5
6
7
8

	from chalice import Chalice
from chalicelib import MESSAGE

app = Chalice(app_name="multifile")

@app.route("/")
def index():
 return {"hello": MESSAGE}

Note in line 2 we’re importing the MESSAGE variable from
the chalicelib package, which is a top level directory
in our project. We’ve created a chalicelib/__init__.py
file which turns the chalicelib directory into a python
package.

We can also use this directory to store config data. Consider
this app structure layout:

.
├── app.py
├── chalicelib
│ └── config.json
└── requirements.txt

With chalicelib/config.json containing:

{"message": "world"}

In our app.py code, we can load and use our config file:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	import os
import json

from chalice import Chalice

app = Chalice(app_name="multifile")

filename = os.path.join(
 os.path.dirname(__file__), 'chalicelib', 'config.json')
with open(filename) as f:
 config = json.load(f)

@app.route("/")
def index():
 # We can access ``config`` here if we want.
 return {"hello": config['message']}

Logging

You have several options for logging in your
application. You can use any of the options
available to lambda functions as outlined
in the
AWS Lambda Docs [https://docs.aws.amazon.com/lambda/latest/dg/python-logging.html].
The simplest option is to just use print statements.
Anything you print will be accessible in cloudwatch logs
as well as in the output of the chalice logs command.

In addition to using the stdlib logging module directly,
the framework offers a preconfigured logger designed to work
nicely with Lambda. This is offered purely as a convenience,
you can use print or the logging module directly if you prefer.

You can access this logger via the app.log
attribute, which is a a logger specifically for your application.
This attribute is an instance of logging.getLogger(your_app_name_)
that’s been preconfigured with reasonable defaults:

	StreamHandler associated with sys.stdout.

	Log level set to logging.ERROR by default.
You can also manually set the logging level by setting
app.log.setLevel(logging.DEBUG).

	A logging formatter that displays the app name, level name,
and message.

Examples

In the following application, we’re using the application logger
to emit two log messages, one at DEBUG and one at the ERROR
level:

from chalice import Chalice

app = Chalice(app_name='demolog')

@app.route('/')
def index():
 app.log.debug("This is a debug statement")
 app.log.error("This is an error statement")
 return {'hello': 'world'}

If we make a request to this endpoint, and then look at
chalice logs we’ll see the following log message:

2016-11-06 20:24:25.490000 9d2a92 demolog - ERROR - This is an error statement

As you can see, only the ERROR level log is emitted because
the default log level is ERROR. Also note the log message formatting.
This is the default format that’s been automatically configured.
We can make a change to set our log level to debug:

from chalice import Chalice

app = Chalice(app_name='demolog')
Enable DEBUG logs.
app.log.setLevel(logging.DEBUG)

@app.route('/')
def index():
 app.log.debug("This is a debug statement")
 app.log.error("This is an error statement")
 return {'hello': 'world'}

Now if we make a request to the / URL and look at the
output of chalice logs, we’ll see the following log message:

2016-11-07 12:29:15.714 431786 demolog - DEBUG - This is a debug statement
2016-11-07 12:29:15.714 431786 demolog - ERROR - This is an error statement

As you can see here, both the debug and error log message are shown.

You can use the -n/--name option to view the logs for a specific lambda
function. By default, the logs for the API handler lambda function are shown.
This corresponds to any log statements made within an @app.route() call.
The name option is the logical name of the lambda function. This is the
name of the python function by default, or whatever name you provided
as the name kwarg to the @app.lambda_function() call. For example,
given this app:

from chalice import Chalice

app = Chalice(app_name='multilog')

@app.lambda_function()
def foo(event, context):
 app.log.debug("Invoking from function foo")
 return {'hello': 'world'}

@app.lambda_function(name='MyFunction)
def bar(event, context):
 incr_counter()
 app.log.debug("Invoking from function bar")
 return {'hello': 'world'}

You can retrieve logs for the above function by running:

$ chalice logs --name foo
$ chalice logs --name MyFunction

SDK Generation

The @app.route(...) information you provide chalice allows
it to create corresponding routes in API Gateway. One of the benefits of this
approach is that we can leverage API Gateway’s SDK generation process.
Chalice offers a chalice generate-sdk command that will automatically
generate an SDK based on your declared routes.

Note

The only supported language at this time is javascript.

Keep in mind that chalice itself does not have any logic for generating
SDKs. The SDK generation happens service side in API Gateway [https://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-generate-sdk.html], the
chalice generate-sdk is just a high level wrapper around that
functionality.

To generate an SDK for a chalice app, run this command from the project
directory:

$ chalice generate-sdk /tmp/sdk

You should now have a generated javascript sdk in /tmp/sdk.
API Gateway includes a README.md as part of its SDK generation
which contains details on how to use the javascript SDK.

Example

Suppose we have the following chalice app:

from chalice import Chalice

app = Chalice(app_name='sdktest')

@app.route('/', cors=True)
def index():
 return {'hello': 'world'}

@app.route('/foo', cors=True)
def foo():
 return {'foo': True}

@app.route('/hello/{name}', cors=True)
def hello_name(name):
 return {'hello': name}

@app.route('/users/{user_id}', methods=['PUT'], cors=True)
def update_user(user_id):
 return {"msg": "fake updated user", "userId": user_id}

Let’s generate a javascript SDK and test it out in the browser.
Run the following command from the project dir:

$ chalice generate-sdk /tmp/sdkdemo
$ cd /tmp/sdkdemo
$ ls -la
-rw-r--r-- 1 jamessar r 3227 Nov 21 17:06 README.md
-rw-r--r-- 1 jamessar r 9243 Nov 21 17:06 apigClient.js
drwxr-xr-x 6 jamessar r 204 Nov 21 17:06 lib

You should now be able to follow the instructions from API Gateway in the
README.md file. Below is a snippet that shows how the generated
javascript SDK methods correspond to the @app.route() calls in chalice.

<script type="text/javascript">
 // Below are examples of how the javascript SDK methods
 // correspond to chalice @app.routes()
 var apigClient = apigClientFactory.newClient();

 // @app.route('/')
 apigClient.rootGet().then(result => {
 document.getElementById('root-get').innerHTML = JSON.stringify(result.data);
 });

 // @app.route('/foo')
 apigClient.fooGet().then(result => {
 document.getElementById('foo-get').innerHTML = JSON.stringify(result.data);
 });

 // @app.route('/hello/{name}')
 apigClient.helloNameGet({name: 'jimmy'}).then(result => {
 document.getElementById('helloname-get').innerHTML = JSON.stringify(result.data);
 });

 // @app.route('/users/{user_id}', methods=['PUT'])
 apigClient.usersUserIdPut({user_id: '123'}, 'body content').then(result => {
 document.getElementById('users-userid-put').innerHTML = JSON.stringify(result.data);
 });
</script>

Example HTML File

If you want to try out the example above, you can use the following index.html
page to test:

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>SDK Test</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/skeleton/2.0.4/skeleton.min.css">
 <script type="text/javascript" src="lib/axios/dist/axios.standalone.js"></script>
 <script type="text/javascript" src="lib/CryptoJS/rollups/hmac-sha256.js"></script>
 <script type="text/javascript" src="lib/CryptoJS/rollups/sha256.js"></script>
 <script type="text/javascript" src="lib/CryptoJS/components/hmac.js"></script>
 <script type="text/javascript" src="lib/CryptoJS/components/enc-base64.js"></script>
 <script type="text/javascript" src="lib/url-template/url-template.js"></script>
 <script type="text/javascript" src="lib/apiGatewayCore/sigV4Client.js"></script>
 <script type="text/javascript" src="lib/apiGatewayCore/apiGatewayClient.js"></script>
 <script type="text/javascript" src="lib/apiGatewayCore/simpleHttpClient.js"></script>
 <script type="text/javascript" src="lib/apiGatewayCore/utils.js"></script>
 <script type="text/javascript" src="apigClient.js"></script>

 <script type="text/javascript">
 // Below are examples of how the javascript SDK methods
 // correspond to chalice @app.routes()
 var apigClient = apigClientFactory.newClient();

 // @app.route('/')
 apigClient.rootGet().then(result => {
 document.getElementById('root-get').innerHTML = JSON.stringify(result.data);
 });

 // @app.route('/foo')
 apigClient.fooGet().then(result => {
 document.getElementById('foo-get').innerHTML = JSON.stringify(result.data);
 });

 // @app.route('/hello/{name}')
 apigClient.helloNameGet({name: 'jimmy'}).then(result => {
 document.getElementById('helloname-get').innerHTML = JSON.stringify(result.data);
 });

 // @app.route('/users/{user_id}', methods=['PUT'])
 apigClient.usersUserIdPut({user_id: '123'}, 'body content').then(result => {
 document.getElementById('users-userid-put').innerHTML = JSON.stringify(result.data);
 });
 </script>
 </head>
 <body>
 <div><h5>result of rootGet()</h5><pre id="root-get"></pre></div>
 <div><h5>result of fooGet()</h5><pre id="foo-get"></pre></div>
 <div><h5>result of helloNameGet({name: 'jimmy'})</h5><pre id="helloname-get"></pre></div>
 <div><h5>result of usersUserIdPut({user_id: '123'})</h5><pre id="users-userid-put"></pre></div>
 </body>
</html>

Chalice Stages

Chalice has the concept of stages, which are completely
separate sets of AWS resources. When you first create a chalice
project and run commands such as chalice deploy and chalice url,
you don’t have to specify any stage values or stage configuration.
This is because chalice will use a stage named dev by default.

You may eventually want to have multiple stages of your application. A
common configuration would be to have a dev, beta and prod
stage. A dev stage would be used by developers to test out new
features. Completed features would be deployed to beta, and the
prod stage would be used for serving production traffic.

Chalice can help you manage this.

To create a new chalice stage, specify the --stage argument.
If the stage does not exist yet, it will be created for you:

$ chalice deploy --stage prod

By creating a new chalice stage, a new API Gateway rest API, Lambda
function, and potentially (depending on config settings) a new IAM role
will be created for you.

Example

Let’s say we have a new app:

$ chalice new-project myapp
$ cd myapp
$ chalice deploy
...
https://mmnkdi.execute-api.us-west-2.amazonaws.com/api/

We’ve just created our first stage, dev. We can iterate on our
application and continue to run chalice deploy to deploy our code
to the dev stage. Let’s say we want to now create a prod stage.
To do this, we can run:

$ chalice deploy --stage prod
...
https://wk9fhx.execute-api.us-west-2.amazonaws.com/api/

We now have two completely separate rest APIs:

$ chalice url --stage dev
https://mmnkdi.execute-api.us-west-2.amazonaws.com/api/

$ chalice url --stage prod
https://wk9fhx.execute-api.us-west-2.amazonaws.com/api/

Additionally, we can see all our deployed values by looking
at the .chalice/deployed/dev.json or .chalice/deployed/prod.json files:

$ cat .chalice/deployed/dev.json
{
 "resources": [
 {
 "name": "api_handler",
 "resource_type": "lambda_function",
 "lambda_arn": "arn:aws:lambda:...:function:myapp-dev"
 },
 {
 "name": "rest_api",
 "resource_type": "rest_api",
 "rest_api_id": "wk9fhx",
 "rest_api_url": "https://wk9fhx.execute-api.us-west-2.amazonaws.com/api/"
 }
],
 "schema_version": "2.0",
 "backend": "api"
}

$ cat .chalice/deployed/prod.json
{
 "resources": [
 {
 "name": "api_handler",
 "resource_type": "lambda_function",
 "lambda_arn": "arn:aws:lambda:...:function:myapp-prod"
 },
 {
 "name": "rest_api",
 "resource_type": "rest_api",
 "rest_api_id": "mmnkdi",
 "rest_api_url": "https://mmnkdi.execute-api.us-west-2.amazonaws.com/api/"
 }
],
 "schema_version": "2.0",
 "backend": "api"
}

App Packaging

In order to deploy your Chalice app, a zip file is created that
contains your application and all third party packages your application
requires. This file is used by AWS Lambda and is referred
to as a deployment package.

Chalice will automatically create this deployment package for you, and offers
several features to make this easier to manage. Chalice allows you to
clearly separate application specific modules and packages you are writing
from 3rd party package dependencies.

App Directories

You have two options to structure application specific code/config:

	app.py - This file includes all your route information and is always
included in the deployment package.

	chalicelib/ - This directory (if it exists) is included in the
deployment package. This is where you can add config files and additional
application modules if you prefer not to have all your app code in the
app.py file.

See Multifile Support for more info on the chalicelib/ directory. Both the
app.py and the chalicelib/ directory are intended for code that you
write yourself.

3rd Party Packages

There are two options for handling python package dependencies:

	requirements.txt - During the packaging process, Chalice will
install any packages it finds or can build compatible wheels for.
Specifically all pure python packages as well as all packages that upload
wheel files for the manylinux1_x86_64 platform will be automatically
installable.

	vendor/ - The contents of this directory are automatically added to
the top level of the deployment package.

Chalice will also check for an optional vendor/ directory in the project
root directory. The contents of this directory are automatically included in
the top level of the deployment package (see Examples for
specific examples). The vendor/ directory is helpful in these scenarios:

	You need to include custom packages or binary content that is not accessible
via pip. These may be internal packages that aren’t public.

	Wheel files are not available for a package you need from pip.

	A package is installable with requirements.txt but has optional c
extensions. Chalice can build the dependency without the c extensions, but
if you want better performance you can vendor a version that is compiled.

As a general rule of thumb, code that you write goes in either app.py or
chalicelib/, and dependencies are either specified in requirements.txt
or placed in the vendor/ directory.

Examples

Suppose I have the following app structure:

.
├── app.py
├── chalicelib
│ ├── __init__.py
│ └── utils.py
├── requirements.txt
└── vendor
 └── internalpackage
 └── __init__.py

And the requirements.txt file had one requirement:

$ cat requirements.txt
sortedcontainers==1.5.4

Then the final deployment package directory structure would look like this:

.
├── app.py
├── chalicelib
│ ├── __init__.py
│ └── utils.py
├── internalpackage
│ └── __init__.py
└── sortedcontainers
 └── __init__.py

This directory structure is then zipped up and sent to AWS Lambda during the
deployment process.

Cryptography Example

Note

Since the original version of this example was written, cryptography has
released version 2.0 which does have manylinux1 wheels available. This
means if you want to use cryptography in a Chalice app all you need to
do is add cryptography or cryptography>=2.0 in your
requirements.txt file.

This example will use version 1.9 of Cryptography
because it is a good example of a library with C extensions and no wheel
files.

Below shows an example of how to use the
cryptography 1.9 [https://pypi.org/project/cryptography/1.9/] package
in a Chalice app for the python3.6 lambda environment.

Suppose you are on a Mac or Windows and want to deploy a Chalice app that
depends on the cryptography==1.9 package. If you simply add it to your
requirements.txt file and try to deploy it with chalice deploy you will
get the following warning during deployment:

$ cat requirements.txt
cryptography==1.9
$ chalice deploy
Updating IAM policy.
Updating lambda function...
Creating deployment package.

Could not install dependencies:
cryptography==1.9
You will have to build these yourself and vendor them in
the chalice vendor folder.

Your deployment will continue but may not work correctly
if missing dependencies are not present. For more information:
http://chalice.readthedocs.io/en/latest/topics/packaging.html

This happened because the cryptography version 1.9 does not have wheel
files available on PyPi, and has C extensions. Since we are not on the same
platform as AWS Lambda, the compiled C extensions Chalice built were not
compatible. To get around this we are going to leverage the vendor/
directory, and build the cryptography package on a compatible linux system.

You can do this yourself by building cryptography on an Amazon Linux
instance running in EC2. All of the following commands were run inside a
python 3.6 virtual environment.

	Download the source first:

$ pip download cryptography==1.9

This will download all the requirements into the current working directory.
The directory should have the following contents:

	asn1crypto-0.22.0-py2.py3-none-any.whl

	cffi-1.10.0-cp36-cp36m-manylinux1_x86_64.whl

	cryptography-1.9.tar.gz

	idna-2.5-py2.py3-none-any.whl

	pycparser-2.17.tar.gz

	six-1.10.0-py2.py3-none-any.whl

This is a complete set of dependencies required for the cryptography package.
Most of these packages have wheels that were downloaded, which means they can
simply be put in the requirements.txt and Chalice will take care of
downloading them. That leaves cryptography itself and pycparser as
the only two that did not have a wheel file available for download.

	Next build the cryptography source package into a wheel file:

$ pip wheel cryptography-1.9.tar.gz

This will take a few seconds and build a wheel file for both cryptography
and pycparser. The directory should now have two additional wheel files:

	cryptography-1.9-cp36-cp36m-linux_x86_64.whl

	pycparser-2.17-py2.py3-none-any.whl

The cryptography wheel file has been built with a compatible
architecture for Lambda (linux_x86_64) and the pycparser has been
built for any architecture which means it can also be automatically
packaged by Chalice if it is listed in the requirements.txt file.

	Download the cryptography wheel file from the Amazon Linux instance and
unzip it into the vendor/ directory in the root directory of your Chalice
app.

You should now have a project directory that looks like this:

$ tree
.
├── app.py
├── requirements.txt
└── vendor
 ├── cryptography
 │ ├── ... Lots of files
 │
 └── cryptography-1.9.dist-info
 ├── DESCRIPTION.rst
 ├── METADATA
 ├── RECORD
 ├── WHEEL
 ├── entry_points.txt
 ├── metadata.json
 └── top_level.txt

The requirements.txt file should look like this:

$ cat requirements.txt
cffi==1.10.0
six==1.10.0
asn1crypto==0.22.0
idna==2.5
pycparser==2.17

In your app.py file you can now import cryptography, and these
dependencies will all get included when the chalice deploy command is
run.

Python Version Support

Chalice supports all versions of python supported by AWS Lambda, which is
currently python2.7 and python3.6.

Chalice will automatically pick which version of python to use for Lambda
based on the major version of python you are using. You don’t have to
explicitly configure which version of python you want to use. For example:

$ python --version
Python 3.6.1
$ chalice new-project test-versions
$ cd test-versions
$ chalice package test-package
$ grep -C 3 python test-package/sam.json
 "APIHandler": {
 "Type": "AWS::Serverless::Function",
 "Properties": {
 "Runtime": "python3.6",
 "Handler": "app.app",
 "CodeUri": "./deployment.zip",
 "Events": {

Similarly, if we were to run "chalice deploy" we'd
use python3.6 for the runtime.
$ chalice --debug deploy
Initiating first time deployment...
Deploying to: dev
...
"Runtime":"python3.6"
...
https://rest-api-id.execute-api.us-west-2.amazonaws.com/api/

In the example above, we’re using python 3.6.1 so chalice automatically
selects the python3.6 runtime for lambda. If we were using python 2.7.11,
chalice would automatically select python2.7 as the runtime.

Chalice will emit a warning if the minor version does not match a python
version supported by Lambda. Chalice will select the closest Lambda version
in this scenario, as shown in the table below.

	Local Python Version

	Lambda Python Runtime

	python2.7.10

	python2.7

	python2.7.11

	python2.7

	python2.7.12

	python2.7

	python2.7.13

	python2.7

	python3.3.6

	python3.6

	python3.4.6

	python3.6

	python3.5.3

	python3.6

	python3.6.0

	python3.6

	python3.6.1

	python3.6

We strongly encourage you to develop your application using the same
major/minor version of python you plan on using on AWS Lambda.

Changing Python Runtime Versions

The version of the python runtime to use in AWS Lambda can be reconfigured
whenever you deploy your chalice app. This allows you to migrate to python3
in AWS Lambda by creating a new virtual environment that uses python3.
For example, suppose you have an existing chalice app that uses python2:

$ python --version
Python 2.7.12
$ chalice deploy
...
https://endpoint/api

To upgrade the application to use python3, create a python3 virtual environment
and redeploy. When this happens, you will be prompted to confirm the python
runtime version changing:

$ deactivate
$ virtualenv --python python3 /tmp/venv3
$ source /tmp/venv3/bin/activate
$ python --version
Python 3.6.1
$ chalice deploy
...
The python runtime will change from python2.7 to python3.6,
would you like to continue? [Y/n]: y
...
https://endpoint/api

AWS CloudFormation Support

When you run chalice deploy, chalice will deploy your application using the
AWS SDK for Python [http://boto3.readthedocs.io/en/docs/]). Chalice also
provides functionality that allows you to manage deployments yourself using
cloudformation. This is provided via the chalice package command.

When you run this command, chalice will generate the AWS Lambda deployment
package that contains your application as well as a Serverless Application
Model (SAM) [https://github.com/awslabs/serverless-application-model]
template. You can then use a tool like the AWS CLI, or any cloudformation
deployment tools you use, to deploy your chalice application.

Considerations

Using the chalice package command is useful when you don’t want to
use chalice deploy to manage your deployments. There’s several reasons
why you might want to do this:

	You have pre-existing infrastructure and tooling set up to manage
cloudformation stacks.

	You want to integrate with other cloudformation stacks to manage
all your AWS resources, including resources outside of your chalice
app.

	You’d like to integrate with AWS CodePipeline [https://aws.amazon.com/codepipeline/] to automatically deploy
changes when you push to a git repo.

Keep in mind that you can’t switch between chalice deploy and
chalice package + CloudFormation for deploying your app.

If you choose to use chalice package and CloudFormation to deploy
your app, you won’t be able to switch back to chalice deploy.
Running chalice deploy would create an entirely new set of AWS
resources (API Gateway Rest API, AWS Lambda function, etc).

Example

In this example, we’ll create a chalice app and deploy it using
the AWS CLI.

First install the necessary packages:

$ virtualenv /tmp/venv
$. /tmp/venv/bin/activate
$ pip install chalice awscli
$ chalice new-project test-cfn-deploy
$ cd test-cfn-deploy

At this point we’ve installed chalice and the AWS CLI and we have
a basic app created locally. Next we’ll run the package command
and look at its contents:

$ $ chalice package /tmp/packaged-app/
Creating deployment package.
$ ls -la /tmp/packaged-app/
-rw-r--r-- 1 j wheel 3355270 May 25 14:20 deployment.zip
-rw-r--r-- 1 j wheel 3068 May 25 14:20 sam.json

$ unzip -l /tmp/packaged-app/deployment.zip | tail -n 5
 17292 05-25-17 14:19 chalice/app.py
 283 05-25-17 14:19 chalice/__init__.py
 796 05-25-17 14:20 app.py
 -------- -------
 9826899 723 files

$ head < /tmp/packaged-app/sam.json
{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Outputs": {
 "RestAPIId": {
 "Value": {
 "Ref": "RestAPI"
 }
 },
 "APIHandlerName": {
 "Value": {

As you can see in the above example, the package command created a
directory that contained two files, a deployment.zip file, which is the
Lambda deployment package, and a sam.json file, which is the SAM template
that can be deployed using CloudFormation. Next we’re going to use the AWS CLI
to deploy our app. To this, we’ll first run the aws cloudformation package
command, which will take our deployment.zip file and upload to an S3 bucket
we specify:

$ aws cloudformation package \
 --template-file /tmp/packaged-app/sam.json \
 --s3-bucket myapp-bucket \
 --output-template-file /tmp/packaged-app/packaged.yaml

Now we can deploy our app using the aws cloudformation deploy command:

$ aws cloudformation deploy \
 --template-file /tmp/packaged-app/packaged.yaml \
 --stack-name test-cfn-stack \
 --capabilities CAPABILITY_IAM
Waiting for changeset to be created..
Waiting for stack create/update to complete
Successfully created/updated stack - test-cfn-stack

This will take a few minutes to complete, but once it’s done, the endpoint url
will be available as an output:

$ aws cloudformation describe-stacks --stack-name test-cfn-stack \
 --query "Stacks[].Outputs[?OutputKey=='EndpointURL'][] | [0].OutputValue"
"https://abc29hkq0i.execute-api.us-west-2.amazonaws.com/api/"

$ http "https://abc29hkq0i.execute-api.us-west-2.amazonaws.com/api/"
HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 18
Content-Type: application/json
...

{
 "hello": "world"
}

Authorization

Chalice supports multiple mechanisms for authorization. This topic
covers how you can integrate authorization into your Chalice applications.

In Chalice, all the authorizers are configured per-route and specified
using the authorizer kwarg to an @app.route() call. You
control which type of authorizer to use based on what’s passed as the
authorizer kwarg. You can use the same authorizer instance for
multiple routes.

The first set of authorizers chalice supports cover the scenario where
you have some existing authorization mechanism that you just want your
Chalice app to use.

Chalice also supports built-in authorizers, which allows Chalice to
manage your custom authorizers as part of chalice deploy. This is
covered in the Built-in Authorizers section.

AWS IAM Authorizer

The IAM Authorizer allows you to control access to API Gateway with
IAM permissions [https://docs.aws.amazon.com/IAM/latest/UserGuide/access_controlling.html]

To associate an IAM authorizer with a route in chalice, you use the
IAMAUthorizer class:

from chalice import IAMAuthorizer

authorizer = IAMAuthorizer()

@app.route('/iam-auth', methods=['GET'], authorizer=authorizer)
def authenticated():
 return {"success": True}

See the API Gateway documentation [https://docs.aws.amazon.com/apigateway/latest/developerguide/permissions.html]
for more information on controlling access to API Gateway with IAM permissions.

Amazon Cognito User Pools

In addition to using IAM roles and policies with the IAMAuthorizer you
can also use a Cognito user pools [https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html] to control who can access your Chalice
app. A cognito user pool serves as your own identity provider to maintain a
user directory.

To integrate Cognito user pools with Chalice, you’ll need to have an existing
cognito user pool configured.

from chalice import CognitoUserPoolAuthorizer

authorizer = CognitoUserPoolAuthorizer(
 'MyPool', provider_arns=['arn:aws:cognito:...:userpool/name'])

@app.route('/user-pools', methods=['GET'], authorizer=authorizer)
def authenticated():
 return {"success": True}

For more information about using Cognito user pools with API Gateway,
see the Use Amazon Cognito User Pools documentation [https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-integrate-with-cognito.html].

Custom Authorizers

API Gateway also lets you write custom authorizers using a Lambda function.
You can configure a Chalice route to use a pre-existing Lambda function as
a custom authorizer. If you also want to write and manage your Lambda
authorizer using Chalice, see the next section, Built-in Authorizers.

To connect an existing Lambda function as a custom authorizer in chalice,
you use the CustomAuthorizer class:

from chalice import CustomAuthorizer

authorizer = CustomAuthorizer(
 'MyCustomAuth', header='Authorization',
 authorizer_uri=('arn:aws:apigateway:region:lambda:path/2015-03-31'
 '/functions/arn:aws:lambda:region:account-id:'
 'function:FunctionName/invocations'))

@app.route('/custom-auth', methods=['GET'], authorizer=authorizer)
def authenticated():
 return {"success": True}

Built-in Authorizers

The IAMAuthorizer, CognitoUserPoolAuthorizer, and the
CustomAuthorizer classes are all for cases where you have existing
resources for managing authorization and you want to wire them together with
your Chalice app. A Built-in authorizer is used when you’d like to write your
custom authorizer in Chalice, and have the additional Lambda functions managed
when you run chalice deploy/delete. This section will cover how to use the
built-in authorizers in chalice.

Creating an authorizer in chalice requires you use the @app.authorizer
decorator to a function. The function must accept a single arg, which will be
an instance of AuthRequest. The function must return a
AuthResponse. As an example, we’ll port the example from the API
Gateway documentation [https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html]. First, we’ll show the code and then walk through it:

from chalice import Chalice, AuthResponse

app = Chalice(app_name='demoauth1')

@app.authorizer()
def demo_auth(auth_request):
 token = auth_request.token
 # This is just for demo purposes as shown in the API Gateway docs.
 # Normally you'd call an oauth provider, validate the
 # jwt token, etc.
 # In this exampe, the token is treated as the status for demo
 # purposes.
 if token == 'allow':
 return AuthResponse(routes=['/'], principal_id='user')
 else:
 # By specifying an empty list of routes,
 # we're saying this user is not authorized
 # for any URLs, which will result in an
 # Unauthorized response.
 return AuthResponse(routes=[], principal_id='user')

@app.route('/', authorizer=demo_auth)
def index():
 return {'context': app.current_request.context}

In the example above we define a built-in authorizer by decorating
the demo_auth function with the @app.authorizer() decorator.
Note you must use @app.authorizer() and not @app.authorizer.
A built-in authorizer function has this type signature:

def auth_handler(auth_request: AuthRequest) -> AuthResponse: ...

Within the auth handler you must determine if the request is
authorized or not. The AuthResponse contains the allowed
URLs as well as the principal id of the user. You can optionally
return a dictionary of key value pairs (as the context kwarg).
This dictionary will be passed through on subsequent requests.
In our example above we’re not using the context dictionary.

Now let’s deploy our app. As usual, we just need to run
chalice deploy and chalice will automatically deploy all the
necessary Lambda functions for us.

Now when we try to make a request, we’ll get an Unauthorized error:

$ http https://api.us-west-2.amazonaws.com/api/
HTTP/1.1 401 Unauthorized

{
 "message": "Unauthorized"
}

If we add the appropriate authorization header, we’ll see the call succeed:

$ http https://api.us-west-2.amazonaws.com/api/ 'Authorization: allow'
HTTP/1.1 200 OK

{
 "context": {
 "accountId": "12345",
 "apiId": "api",
 "authorizer": {
 "principalId": "user"
 },
 "httpMethod": "GET",
 "identity": {
 "accessKey": null,
 "accountId": null,
 "apiKey": "",
 "caller": null,
 "cognitoAuthenticationProvider": null,
 "cognitoAuthenticationType": null,
 "cognitoIdentityId": null,
 "cognitoIdentityPoolId": null,
 "sourceIp": "1.1.1.1",
 "user": null,
 "userAgent": "HTTPie/0.9.9",
 "userArn": null
 },
 "path": "/api/",
 "requestId": "d35d2063-56be-11e7-9ce1-dd61c24a3668",
 "resourceId": "id",
 "resourcePath": "/",
 "stage": "dev"
 }
}

The low level API for API Gateway’s custom authorizer feature requires
that an IAM policy must be returned. The AuthResponse class we’re
using is a wrapper over building the IAM policy ourself. If you want
low level control and would prefer to contruct the IAM policy yourself
you can return a dictionary of the IAM policy instead of an instance of
AuthResponse. If you do that, the dictionary is returned
without modification back to API Gateway.

For more information on custom authorizers, see the
Use API Gateway Custom Authorizers [https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html]
page in the API Gateway user guide.

Lambda Event Sources

Scheduled Events

Chalice has support for scheduled events. This feature allows you to
periodically invoke a lambda function based on some regular schedule. You can
specify a fixed rate or a cron expression.

To create a scheduled event in chalice, you use the @app.schedule()
decorator. Let’s look at an example.

app = chalice.Chalice(app_name='foo')

@app.schedule('rate(1 hour)')
def every_hour(event):
 print(event.to_dict())

In this example, we have a single lambda function that we want automatically
invoked every hour. When you run chalice deploy Chalice will create a
lambda function as well as the necessary CloudWatch events/rules such that the
every_hour function is invoked every hour.

The Chalice.schedule() method accepts either a string or an
instance of Rate or Cron. For example:

app = chalice.Chalice(app_name='foo')

@app.schedule(Rate(1, unit=Rate.HOURS))
def every_hour(event):
 print(event.to_dict())

The function you decorate must accept a single argument,
which will be of type CloudWatchEvent.

You can use the schedule() decorator multiple times
in your chalice app. Each schedule() decorator will
result in a new lambda function and associated CloudWatch
event rule. For example:

app = chalice.Chalice(app_name='foo')

@app.schedule(Rate(1, unit=Rate.HOURS))
def every_hour(event):
 print(event.to_dict())

@app.schedule(Rate(2, unit=Rate.HOURS))
def every_two_hours(event):
 print(event.to_dict())

In the app above, chalice will create two lambda functions,
and configure every_hour to be invoked once an hour,
and every_two_hours to be invoked once every two hours.

S3 Events

You can configure a lambda function to be invoked whenever
certain events happen in an S3 bucket. This uses the
event notifications [https://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html] feature provided by Amazon S3.

To configure this, you just tell Chalice the name of an existing
S3 bucket, along with what events should trigger the lambda function.
This is done with the Chalice.on_s3_event() decorator.

Here’s an example:

from chalice import Chalice

app = chalice.Chalice(app_name='s3eventdemo')
app.debug = True

@app.on_s3_event(bucket='mybucket-name',
 events=['s3:ObjectCreated:*'])
def handle_s3_event(event):
 app.log.debug("Received event for bucket: %s, key: %s",
 event.bucket, event.key)

In this example above, Chalice connects the S3 bucket to the
handle_s3_event Lambda function such that whenver an object is uploaded
to the mybucket-name bucket, the Lambda function will be invoked.
This example also uses the .bucket and .key attribute from the
event parameter, which is of type S3Event.

It will automatically create the appropriate S3 notification configuration
as needed. Chalice will also leave any existing notification configuration
on the mybucket-name untouched. It will only merge in the additional
configuration needed for the handle_s3_event Lambda function.

Warning

This feature only works when using chalice deploy. Because you
configure the lambda function with the name of an existing S3 bucket,
it is not possible to describe this using a CloudFormation/SAM template.
The chalice package command will fail. You will eventually be able
to request that chalice create a bucket for you, which will support
the chalice package command.

The function you decorate must accept a single argument,
which will be of type S3Event.

SNS Events

You can configure a lambda function to be automatically invoked whenever
something publishes to an SNS topic. Chalice will automatically handle
creating the lambda function, subscribing the lambda function to the
SNS topic, and modifying the lambda function policy to allow SNS to invoke
the function.

To configure this, you just need the name of an existing SNS topic you’d
like to subscribe to. The SNS topic must already exist.

Below is an example of how to set this up. The example uses boto3 to
create the SNS topic. If you don’t have boto3 installed in your virtual
environment, be sure to install it with:

$ pip install boto3

First, we’ll create an SNS topic using boto3.

$ python
>>> import boto3
>>> sns = boto3.client('sns')
>>> sns.create_topic(Name='my-demo-topic')
{'TopicArn': 'arn:aws:sns:us-west-2:12345:my-demo-topic',
 'ResponseMetadata': {}}

Next, we’ll create our chalice app:

$ chalice new-project chalice-demo-sns
$ cd chalice-demo-sns/

We’ll update the app.py file to use the on_sns_message decorator:

from chalice import Chalice

app = chalice.Chalice(app_name='chalice-sns-demo')
app.debug = True

@app.on_sns_message(topic='my-demo-topic')
def handle_sns_message(event):
 app.log.debug("Received message with subject: %s, message: %s",
 event.subject, event.message)

We can now deploy our chalice app:

$ chalice deploy
Creating deployment package.
Creating IAM role: chalice-demo-sns-dev
Creating lambda function: chalice-demo-sns-dev-handle_sns_message
Subscribing chalice-demo-sns-dev-handle_sns_message to SNS topic my-demo-topic
Resources deployed:
 - Lambda ARN: arn:aws:lambda:us-west-2:123:function:...

And now we can test our app by publishing a few SNS messages to our topic.
We’ll do this using boto3. In the example below, we’re using list_topics()
to find the ARN associated with our topic name before calling the publish()
method.

$ python
>>> import boto3
>>> sns = boto3.client('sns')
>>> topic_arn = [t['TopicArn'] for t in sns.list_topics()['Topics']
... if t['TopicArn'].endswith(':my-demo-topic')][0]
>>> sns.publish(Message='TestMessage1', Subject='TestSubject1',
... TopicArn=topic_arn)
{'MessageId': '12345', 'ResponseMetadata': {}}
>>> sns.publish(Message='TestMessage2', Subject='TestSubject2',
... TopicArn=topic_arn)
{'MessageId': '54321', 'ResponseMetadata': {}}

To verify our function was called correctly, we can use the chalice logs
command:

$ chalice logs -n handle_sns_message
2018-06-28 17:49:30.513000 547e0f chalice-demo-sns - DEBUG - Received message with subject: TestSubject1, message: TestMessage1
2018-06-28 17:49:40.391000 547e0f chalice-demo-sns - DEBUG - Received message with subject: TestSubject2, message: TestMessage2

In this example we used the SNS topic name to register our handler, but you can
also use the topic arn. This can be useful if your topic is in another region
or account.

SQS Events

You can configure a lambda function to be invoked whenever messages are
available on an SQS queue. To configure this, use the
Chalice.on_sqs_message() decorator and provide the name of the SQS queue
and an optional batch size.

The message visibility timeout of your SQS queue must be greater than or
equal to the lambda timeout. The default message visibility timeout
when you create an SQS queue is 30 seconds, and the default timeout
for a Lambda function is 60 seconds, so you’ll need to modify one of these
values in order to succesfully connect an SQS queue to a Lambda function.

You can check the visibility timeout of your queue using the
GetQueueAttributes API call. Using the
AWS CLI [https://docs.aws.amazon.com/cli/latest/reference/sqs/get-queue-attributes.html],
you can run this command to check the value:

$ aws sqs get-queue-attributes \
 --queue-url https://us-west-2.queue.amazonaws.com/1/testq \
 --attribute-names VisibilityTimeout
{
 "Attributes": {
 "VisibilityTimeout": "30"
 }
}

You can set the visibility timeout of your SQS queue using the
SetQueueAttributes API call. Again using the AWS CLI you can
run this command:

$ aws sqs set-queue-attributes \
 --queue-url https://us-west-2.queue.amazonaws.com/1/testq \
 --attributes VisibilityTimeout=60

If you would prefer to change the timeout of your lambda function instead,
you can specify this timeout value using the lambda_timeout config key
if your .chalice/config.json file.
See Lambda Specific Configuration for a list of all supported lambda configuration
values in chalice. In this example below, we’re setting the timeout
of our handle_sqs_message lambda function to 30 seconds:

$ cat .chalice/config.json
{
 "stages": {
 "dev": {
 "lambda_functions": {
 "handle_sqs_message": {
 "lambda_timeout": 30
 }
 }
 }
 },
 "version": "2.0",
 "app_name": "chalice-sqs-demo"
}

Note

FIFO SQS queues are not currently supported.

In this example below, we’re connecting the handle_sqs_message lambda
function to the my-queue SQS queue.

from chalice import Chalice

app = chalice.Chalice(app_name='chalice-sqs-demo')
app.debug = True

@app.on_sqs_message(queue='my-queue', batch_size=1)
def handle_sqs_message(event):
 for record in event:
 app.log.debug("Received message with contents: ", record.body)

Whenver a message is sent to the SQS queue our function will be automatically
invoked. The function argument is an SQSEvent object, and each
record in the example above is of type SQSRecord. Lambda takes
care of automatically scaling your function as needed. See Understanding
Scaling Behavior [https://docs.aws.amazon.com/lambda/latest/dg/scaling.html] for more information on how Lambda scaling works.

If your lambda functions completes without raising an exception, then
Lambda will automatically delete all the messages associated with the
SQSEvent. You don’t need to manually call sqs.delete_message()
in your lambda function. If your lambda function raises an exception, then
Lambda won’t delete any messages, and once the visibility timeout has been
reached, the messages will be available again in the SQS queue. Note that
if you are using a batch size of more than one, the entire batch succeeds or
fails. This means that it is possible for your lambda function to see
a message multiple times, even if it’s successfully processed the message
previously. There are a few options available to mitigate this:

	Use a batch size of 1 (the default value).

	Use a separate data store to check if you’ve already processed an SQS
message. You can use services such as Amazon DynamoDB or Amazon ElastiCache.

	Manually call sqs.delete_message() in your Lambda function once you’ve
successfully processed a message.

For more information on Lambda and SQS,
see the AWS documentation [https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html].

Pure Lambda Functions

Chalice provides abstractions over AWS Lambda functions, including:

	An API handler the coordinates with API Gateway for creating rest APIs.

	A custom authorizer that allows you to integrate custom auth logic in your
rest API.

	A scheduled event that includes managing the CloudWatch Event rules, targets,
and permissions.

However, chalice also supports managing pure Lambda functions that don’t have
any abstractions built on top. This is useful if you want to create a Lambda
function for something that’s not supported by chalice or if you just want to
create Lambda functions but don’t want to manage handling dependencies and
deployments yourself.

In order to do this, you can use the Chalice.lambda_function() decorator
to denote that this python function is a pure lambda function that should
be invoked as is, without any input or output mapping. When you use
this function, you must provide a function that maps to the same function
signature expected by AWS Lambda as defined here [https://docs.aws.amazon.com/lambda/latest/dg/python-programming-model-handler-types.html].

Let’s look at an example.

app = chalice.Chalice(app_name='foo')

@app.route('/')
def index():
 return {'hello': 'world'}

@app.lambda_function()
def custom_lambda_function(event, context):
 # Anything you want here.
 return {}

@app.lambda_function(name='MyFunction')
def other_lambda_function(event, context):
 # Anything you want here.
 return {}

In this example, we’ve updated the starter hello world app with
two extra Lambda functions. When you run chalice deploy Chalice will create
three Lambda functions. The first lambda function is for the API handler
used by API gateway. The second and third lambda function will be pure lambda
functions. These two additional lambda functions won’t be hooked up to anything.
You’ll need to manage connecting them to any additional AWS Resources on your
own.

Blueprints

Warning

Blueprints are considered an experimental API. You’ll need to opt-in
to this feature using the BLUEPRINTS feature flag:

app = Chalice('myapp')
app.experimental_feature_flags.extend([
 'BLUEPRINTS'
])

See Experimental APIs for more information.

Chalice blueprints are used to organize your application into logical
components. Using a blueprint, you define your resources and decorators in
modules outside of your app.py. You then register a blueprint in your main
app.py file. Blueprints support any decorator available on an application
object.

Note

The Chalice blueprints are conceptually similar to Blueprints [http://flask.pocoo.org/docs/latest/blueprints/] in Flask. Flask
blueprints allow you to define a set of URL routes separately from the main
Flask object. This concept is extended to all resources in Chalice. A
Chalice blueprint can have Lambda functions, event handlers, built-in
authorizers, etc. in addition to a collection of routes.

Example

In this example, we’ll create a blueprint with part of our routes defined in a
separate file. First, let’s create an application:

$ chalice new-project blueprint-demo
$ cd blueprint-demo
$ mkdir chalicelib
$ touch chalicelib/__init__.py
$ touch chalicelib/blueprints.py

Next, we’ll oen the chalicelib/blueprints.py file:

from chalice import Blueprint

extra_routes = Blueprint(__name__)

@extra_routes.route('/foo')
def foo():
 return {'foo': 'bar'}

The __name__ is used to denote the import path of the blueprint. This name
must match the import name of the module so the function can be properly
imported when running in Lambda. We’ll now import this module in our
app.py and register this blueprint. We’ll also add a route in our
app.py directly:

from chalice import Chalice
from chalicelib.blueprints import extra_routes

app = Chalice(app_name='blueprint-demo')
app.register_blueprint(extra_routes)

@app.route('/')
def index():
 return {'hello': 'world'}

At this point, we’ve defined two routes. One route, /, is directly defined
in our app.py file. The other route, /foo is defined in
chalicelib/blueprints.py. It was added to our Chalice app when we
registered it via app.register_blueprint(extra_routes).

We can deploy our application to verify this works as expected:

$ chalice deploy
Creating deployment package.
Creating IAM role: blueprint-demo-dev
Creating lambda function: blueprint-demo-dev
Creating Rest API
Resources deployed:
 - Lambda ARN: arn:aws:lambda:us-west-2:1234:function:blueprint-demo-dev
 - Rest API URL: https://rest-api.execute-api.us-west-2.amazonaws.com/api/

We should now be able to request the / and /foo routes:

$ http https://rest-api.execute-api.us-west-2.amazonaws.com/api/
HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 17
Content-Type: application/json
Date: Sat, 22 Dec 2018 01:05:48 GMT
Via: 1.1 5ab5dc09da67e3ea794ec8a82992cc89.cloudfront.net (CloudFront)
X-Amz-Cf-Id: Cdsow9--fnTH5EdjkjWBMWINCCMD4nGmi4S_3iMYMK0rpc8Mpiymgw==
X-Amzn-Trace-Id: Root=1-5c1d8dec-f1ef3ee83c7c654ca7fb3a70;Sampled=0
X-Cache: Miss from cloudfront
x-amz-apigw-id: SSMc6H_yvHcFcEw=
x-amzn-RequestId: b7bd0c87-0585-11e9-90cf-59b71c1a1de1

{
 "hello": "world"
}

$ http https://rest-api.execute-api.us-west-2.amazonaws.com/api/foo
HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 13
Content-Type: application/json
Date: Sat, 22 Dec 2018 01:05:51 GMT
Via: 1.1 95b0ac620fa3a80ee590ecf1cda1c698.cloudfront.net (CloudFront)
X-Amz-Cf-Id: HX4l1BNdWvYDRXan17PFZya1vaomoJel4rP7d8_stdw2qT50v7Iybg==
X-Amzn-Trace-Id: Root=1-5c1d8def-214e7f681ff82c00fd81f37a;Sampled=0
X-Cache: Miss from cloudfront
x-amz-apigw-id: SSMdXF40vHcF-mg=
x-amzn-RequestId: b96f77bf-0585-11e9-b229-01305cd40040

{
 "foo": "bar"
}

Blueprint Registration

The app.register_blueprint function accepts two optional arguments,
name_prefix and url_prefix. This allows you to register the resources
in your blueprint at a certain url and name prefix. If you specify
url_prefix, any routes defined in your blueprint will have the
url_prefix prepended to it. If you specify the name_prefix, any Lambda
functions created will have the name_prefix prepended to the resource name.

Advanced Example

Let’s create a more advanced example. If this application, let’s say we want
to organize our application into separate modules for our API and our event
sources. We can create an app with these files:

$ ls -la chalicelib/
__init__.py
api.py
events.py

The contents of api.py are:

from chalice import Blueprint

myapi = Blueprint(__name__)

@myapi.route('/')
def index():
 return {'hello': 'world'}

@myapi.route('/foo')
def index():
 return {'foo': 'bar'}

The contents of events.py are:

from chalice import Blueprint

myevents = Blueprint(__name__)

@myevents.schedule('rate(5 minutes)')
def cron(event):
 pass

@myevents.on_sns_message('MyTopic')
def handle_sns_message(event):
 pass

In our app.py we’ll register these blueprints:

from chalice import Chalice
from chalicelib.events import myevents
from chalicelib.api import myapi

app = Chalice(app_name='blueprint-demo')
app.register_blueprint(myevents)
app.register_blueprint(myapi)

Now our app.py only registers the necessary blueprints, and all our
resources are defined in blueprints.

Continuous Deployment (CD)

Chalice can be used to set up a basic Continuous Deployment pipeline. The
chalice deploy command is good for getting up and running quickly with
Chalice, but in a team environment properly managing permissions and sharing
and updating the deployed.json file will get messy.

One way to scale up your chalice app is to create a continuous deployment
pipeline. The pipeline can run tests on code changes and, if they pass, promote
the new build to a testing stage. More checks can be put in place to manually
promote a build to production, or you can do so automatically. This model
greatly simplifies managing what resources belong to your Chalice app as they
are all stored in the Continuous Deployment pipeline.

Chalice can generate a CloudFormation template that will create a starter CD
pipeline. It contains a CodeCommit repo, a CodeBuild stage for
packaging your chalice app, and a CodePipeline stage to deploy your
application using CloudFormation.

Usage example

Setting up the deployment pipeline is a two step process. First use the
chalice generate-pipeline command to generate a base CloudFormation
template. Second use the AWS CLI to deploy the CloudFormation template using
the aws cloudformation deploy command. Below is an example.

$ chalice generate-pipeline pipeline.json
$ aws cloudformation deploy --stack-name mystack
 --template-file pipeline.json --capabilities CAPABILITY_IAM
Waiting for changeset to be created..
Waiting for stack create/update to complete
Successfully created/updated stack - mystack

Once the CloudFormation template has finished creating the stack, you will have
several new AWS resources that make up a bare bones CD pipeline.

	CodeCommit Repository - The CodeCommit [https://aws.amazon.com/codecommit/]
repository is the entrypoint into the pipeline. Any code you want to deploy
should be pushed to this remote.

	CodePipeline Pipeline - The
CodePipeline [https://aws.amazon.com/codepipeline/] is what coordinates
the build process, and pushes the released code out.

	CodeBuild Project - The CodeBuild [https://aws.amazon.com/codebuild/]
project is where the code bundle is built that will be pushed to Lambda. The
default CloudFormation template will create a CodeBuild stage that builds
a package using chalice package and then uploads those artifacts for
CodePipeline to deploy.

	S3 Buckets - Two S3 buckets are created on your behalf.

	artifactbucketstore - This bucket stores artifacts that are built by
the CodeBuild project. The only artifact by default is the
transformed.yaml created by the aws cloudformation package command.

	applicationbucket - Stores the application bundle after the Chalice
application has been packaged in the CodeBuild stage.

	Each resource is created with all the required IAM roles and policies.

CodeCommit repository

The CodeCommit repository can be added as a git remote for deployment. This
makes it easy to kick off deployments. The developer doing the deployment only
needs to push the release code up to the CodeCommit repository master branch.
All the developer needs is keys that allow for push access to the CodeCommit
repository. This is a lot easier than managing a set of deployed.json
resources across a repsoitory and manually doing chalice deploy whenever
a change needs to be deployed.

The default CodeCommit repository that is created is empty, you will have to
populate it with the Chalice application code. Permissions will also need to be
set up, you can find the documentation on how to do that
here [https://docs.aws.amazon.com/codebuild/latest/userguide/setting-up.html]
.

CodePipeline

CodePipeline is the main coordinator between all the other resources. It
watches for changes on the CodeCommit repository, and triggers builds in the
CodeBuild project. If the build succeeds then it will start a CloudFormation
deployment of the built artifacts to a beta stage. This should be treated as
a starting point, not a fully featured CD system.

CodeBuild build script

By default Chalice will create the CodeBuild project with a default buildspec
that does the following.

version: 0.1
phases:
 install:
 commands:
 - sudo pip install --upgrade awscli
 - aws --version
 - sudo pip install chalice
 - sudo pip install -r requirements.txt
 - chalice package /tmp/packaged
 - aws cloudformation package --template-file
 tmp/packaged/sam.json --s3-bucket ${APP_S3_BUCKET}
 --output-template-file transformed.yaml
artifacts:
 type: zip
 files:
 - transformed.yaml

The CodeBuild stage installs both the AWS CLI and Chalice, then creates a
package out of your chalice project, pushing the package to the application
S3 bucket that was created for you. The transformed CloudFormation template
is the only artifact, and can be run by CodePipeline after the build has
succeeded.

Deploying to beta stage

Once the CodeBuild stage has finished building the Chalice package and
creating the transformed.yaml, CodePipeline will take these artifacts and
use them to create or update the beta stage. The transformed.yaml
is a CloudFormation template that CodePipeline will execute, all the code it
references has been uploaded to the application bucket by the AWS CLI in the
CodeBuild stage, so this is the only artifact we need.

Once the CodePipeline beta build stage is finished, the beta version of the app
is deployed and ready for testing.

Extending

It is recommended to use this pipeline as a starting point. The default
template does not run any tests on the Chalice app before deploying to beta.
There is also no mechanism provided by Chalice for a production stage.
Ideally the CodeBuild stage would be used to run unit and functional tests
before deploying to beta. After the beta stage is up, integration tests can be
run against that endpoint, and if they all pass the beta stage could be
promoted to a production stage using the CodePipleine manual approval feature.

Experimental APIs

Chalice maintains backwards compatibility for all features that appear in this
documentation. Any Chalice application using version 1.x will continue to work
for all future versions of 1.x.

We also believe that Chalice has a lot of potential for new ideas and APIs,
many of which will take several iterations to get right. We may implement a
new idea and need to make changes based on customer usage and feedback. This
may include backwards incompatible changes all the way up to the removal of
a feature.

To accommodate these new features, Chalice has support for experimental APIs,
which are features that are added to Chalice on a provisional basis. Because
these features may include backwards incompatible changes, you must explicitly
opt-in to using these features. This makes it clear that you are using an
experimental feature that may change.

Opting-in to Experimental APIs

Each experimental feature in chalice has a name associated with it. To opt-in
to an experimental API, you must have the feature name to the
experimental_feature_flags attribute on your app object.
This attribute’s type is a set of strings.

from chalice import Chalice

app = Chalice('myapp')
app.experimental_feature_flags.update([
 'MYFEATURE1',
 'MYFEATURE2',
])

If you use an experimental API without opting-in, you will receive
a message whenever you run a Chalice CLI command. The error message
tells you which feature flags you need to add:

$ chalice deploy
You are using experimental features without explicitly opting in.
Experimental features do not guarantee backwards compatibility and may be removed in the future.
If you still like to use these experimental features, you can opt-in by adding this to your app.py file:

app.experimental_feature_flags.update([
 'BLUEPRINTS'
])

See https://chalice.readthedocs.io/en/latest/topics/experimental.rst for more details.

The feature flag only happens when running CLI commands. There are no runtime
checks for experimental features once your application is deployed.

List of Experimental APIs

In the table below, the “Feature Flag Name” column is the value you
must add to the app.experimental_feature_flags attribute.
The status of an experimental API can be:

	Trial - You must explicitly opt-in to use this feature.

	Accepted - This feature has graduated from an experimental
feature to a fully supported, backwards compatible feature in Chalice.
Accepted features still appear in the table for auditing purposes.

	Rejected - This feature has been removed.

Experimental APIs

	Feature

	Feature Flag Name

	Version Added

	Status

	GitHub Issue(s)

	Blueprints

	BLUEPRINTS

	1.7.0

	Trial

	#1023 [https://github.com/aws/chalice/pull/1023],
#651 [https://github.com/aws/chalice/pull/651]

See the original discussion [https://github.com/aws/chalice/issues/1019]
for more background information and alternative proposals.

Chalice

	
class Chalice(app_name)

	This class represents a chalice application. It provides:

	The ability to register routes using the route() method.

	Within a view function, the ability to introspect the current
request using the current_request attribute which is an instance
of the Request class.

	
current_request

	An object of type Request. This value is only set when
a view function is being called. This attribute can be used to
introspect the current HTTP request.

	
api

	An object of type APIGateway. This attribute can be used to control
how apigateway interprets Content-Type headers in both requests and
responses.

	
lambda_context

	A Lambda context object that is passed to the invoked view by AWS
Lambda. You can find out more about this object by reading the
lambda context object documentation [https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html].

	
debug

	A boolean value that enables debugging. By default, this value is
False. If debugging is true, then internal errors are returned back
to the client. Additionally, debug log messages generated by the
framework will show up in the cloudwatch logs. Example usage:

from chalice import Chalice

app = Chalice(app_name="appname")
app.debug = True

	
route(path, **options)

	Register a view function for a particular URI path. This method
is intended to be used as a decorator for a view function. For example:

from chalice import Chalice

app = Chalice(app_name="appname")

@app.route('/resource/{value}', methods=['PUT'])
def viewfunction(value):
 pass

	Parameters

	
	path (str) – The path to associate with the view function. The
path should only contain [a-zA-Z0-9._-] chars and curly
braces for parts of the URL you would like to capture. The path
should not end in a trailing slash, otherwise a validation error
will be raised during deployment.

	methods (list) – Optional parameter that indicates which HTTP methods
this view function should accept. By default, only GET requests
are supported. If you only wanted to support POST requests, you
would specify methods=['POST']. If you support multiple HTTP
methods in a single view function (methods=['GET', 'POST']), you
can check the app.current_request.method
attribute to see which HTTP method was used when making the request.

	name (str) – Optional parameter to specify the name of the view
function. You generally do not need to set this value. The name
of the view function is used as the default value for the view name.

	authorizer (Authorizer) – Specify an authorizer to use for this
view. Can be an instance of CognitoUserPoolAuthorizer,
CustomAuthorizer or IAMAuthorizer.

	content_types (str) – A list of content types to accept for
this view. By default application/json is accepted. If
this value is specified, then chalice will reject any incoming request
that does not match the provided list of content types with a
415 Unsupported Media Type response.

	api_key_required (boolean) – Optional parameter to specify whether
the method required a valid API key.

	cors – Specify if CORS is supported for this view. This can either
by a boolean value or an instance of CORSConfig. Setting this
value is set to True gives similar behavior to enabling CORS in the
AWS Console. This includes injecting the
Access-Control-Allow-Origin header to have a value of * as well
as adding an OPTIONS method to support preflighting requests. If
you would like more control over how CORS is configured, you can
provide an instance of CORSConfig.

	
authorizer(name, **options)

	Register a built-in authorizer.

from chalice import Chalice, AuthResponse

app = Chalice(app_name="appname")

@app.authorizer(ttl_seconds=30)
def my_auth(auth_request):
 # Validate auth_request.token, and then:
 return AuthResponse(routes=['/'], principal_id='username')

@app.route('/', authorizer=my_auth)
def viewfunction(value):
 pass

	Parameters

	
	ttl_seconds – The number of seconds to cache this response.
Subsequent requests that require this authorizer will use a
cached response if available. The default is 300 seconds.

	execution_role – An optional IAM role to specify when invoking
the Lambda function associated with the built-in authorizer.

	
schedule(expression, name=None)

	Register a scheduled event that’s invoked on a regular schedule.
This will create a lambda function associated with the decorated
function. It will also schedule the lambda function to be invoked
with a scheduled CloudWatch Event.

See Scheduled Events for more information.

@app.schedule('cron(15 10 ? * 6L 2002-2005)')
def cron_handler(event):
 pass

@app.schedule('rate(5 minutes)')
def rate_handler(event):
 pass

@app.schedule(Rate(5, unit=Rate.MINUTES))
def rate_obj_handler(event):
 pass

@app.schedule(Cron(15, 10, '?', '*', '6L', '2002-2005'))
def cron_obj_handler(event):
 pass

	Parameters

	
	expression – The schedule expression to use for the CloudWatch
event rule. This value can either be a string value or an
instance of type ScheduleExpression, which is either a
Cron or Rate object. If a string value is
provided, it will be provided directly as the ScheduleExpression
value in the PutRule [https://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutRule.html#API_PutRule_RequestSyntax] API
call.

	name – The name of the function to use. This name is combined
with the chalice app name as well as the stage name to create the
entire lambda function name. This parameter is optional. If it is
not provided, the name of the python function will be used.

	
on_s3_event(bucket, events=None, prefix=None, suffix=None, name=None)

	Create a lambda function and configure it to be automatically invoked
whenever an event happens on an S3 bucket.

Warning

You can’t use the chalice package command when using the
on_s3_event decorator. This is because CFN does not support
configuring an existing S3 bucket.

See S3 Events for more information.

This example shows how you could implement an image resizer that’s
triggered whenever an object is uploaded to the images/ prefix
of an S3 bucket (e.g s3://mybucket/images/house.jpg).

@app.on_s3_event('mybucket', events=['s3:ObjectCreated:Put'],
 prefix='images/', suffix='.jpg')
def resize_image(event):
 with tempfile.NamedTemporaryFile('w') as f:
 s3.download_file(event.bucket, event.key, f.name)
 resize_image(f.name)
 s3.upload_file(event.bucket, 'resized/%s' % event.key, f.name)

	Parameters

	
	bucket – The name of the S3 bucket. This bucket must already exist.

	events – A list of strings indicating the events that should trigger
the lambda function. See Supported Event Types [https://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html#supported-notification-event-types]
for the full list of strings you can provide. If this option is not
provided, a default of ['s3:ObjectCreated:*'] is used, which will
configure the lambda function to be invoked whenever a new object
is created in the S3 bucket.

	prefix – An optional key prefix. This specifies that
the lambda function should only be invoked if the key matches
this prefix (e.g. prefix='images/').

	suffix – An optional key suffix. This specifies that the
lambda function should only be invoked if the key name ends with
this suffix (e.g. suffix='.jpg').

	name – The name of the function to use. This name is combined
with the chalice app name as well as the stage name to create the
entire lambda function name. This parameter is optional. If it is
not provided, the name of the python function will be used.

	
on_sns_message(topic, name=None)

	Create a lambda function and configure it to be automatically invoked
whenever an SNS message is published to the specified topic.

See SNS Events for more information.

This example prints the subject and the contents of the message whenever
something publishes to the sns topic of mytopic. In this example,
the input parameter is of type SNSEvent.

app.debug = True

@app.on_sns_message(topic='mytopic')
def handler(event):
 app.log.info("SNS subject: %s", event.subject)
 app.log.info("SNS message: %s", event.message)

	Parameters

	
	topic – The name or ARN of the SNS topic you want to subscribe to.

	name – The name of the function to use. This name is combined
with the chalice app name as well as the stage name to create the
entire lambda function name. This parameter is optional. If it is
not provided, the name of the python function will be used.

	
on_sqs_message(queue, batch_size=1, name=None)

	Create a lambda function and configure it to be automatically invoked
whenever a message is published to the specified SQS queue.

The lambda function must accept a single parameter which
is of type SQSEvent.

If the decorated function returns without raising any exceptions
then Lambda will automatically delete the SQS messages associated
with the SQSEvent. You don’t need to manually delete
messages. If any exception is raised, Lambda won’t delete any messages,
and the messages will become available once the visibility timeout
has been reached. Note that for batch sizes of more than one, either
the entire batch succeeds and all the messages in the batch are
deleted by Lambda, or the entire batch fails. The default batch size
is 1. See the
Using AWS Lambda with Amazon SQS [https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html]
for more information on how Lambda integrates with SQS.

See the SQS Events topic guide for more information on using SQS
in Chalice.

app.debug = True

@app.on_sqs_message(queue='myqueue')
def handler(event):
 app.log.info("Event: %s", event.to_dict())
 for record in event:
 app.log.info("Message body: %s", record.body)

	Parameters

	
	queue – The name of the SQS queue you want to subscribe to.
This is the name of the queue, not the ARN or Queue URL.

	batch_size – The maximum number of messages to retrieve
when polling for SQS messages. The event parameter can have
multiple SQS messages associated with it. This is why the
event parameter passed to the lambda function is iterable. The
batch size controls how many messages can be in a single event.

	name – The name of the function to use. This name is combined
with the chalice app name as well as the stage name to create the
entire lambda function name. This parameter is optional. If it is
not provided, the name of the python function will be used.

	
lambda_function(name=None)

	Create a pure lambda function that’s not connected to anything.

See Pure Lambda Functions for more information.

	Parameters

	name – The name of the function to use. This name is combined
with the chalice app name as well as the stage name to create the
entire lambda function name. This parameter is optional. If it is
not provided, the name of the python function will be used.

	
register_blueprint(blueprint, name_prefix=None, url_prefix=None)

	Register a Blueprint to a Chalice app.
See Blueprints for more information.

	Parameters

	
	blueprint – The Blueprint to register to the app.

	name_prefix – An optional name prefix that’s added to all the
resources specified in the blueprint.

	url_prefix – An optional url prefix that’s added to all the
routes defined the Blueprint. This allows you to set the root mount
point for all URLs in a Blueprint.

Request

	
class Request

	A class that represents the current request. This is mapped to
the app.current_request object.

@app.route('/objects/{key}', methods=['GET', 'PUT'])
def myobject(key):
 request = app.current_request
 if request.method == 'PUT':
 # handle PUT request
 pass
 elif request.method == 'GET':
 # handle GET request
 pass

	
query_params

	A dict of the query params for the request. This value is None if
no query params were provided in the request.

	
headers

	A dict of the request headers.

	
uri_params

	A dict of the captured URI params. This value is None if no
URI params were provided in the request.

	
method

	The HTTP method as a string.

	
json_body

	The parsed JSON body (json.loads(raw_body)). This value will only
be non-None if the Content-Type header is application/json, which
is the default content type value in chalice.

	
raw_body

	The raw HTTP body as bytes. This is useful if you need to
calculate a checksum of the HTTP body.

	
context

	A dict of additional context information.

	
stage_vars

	A dict of configuration for the API Gateway stage.

	
to_dict()

	Convert the Request object to a dictionary. This is useful
for debugging purposes. This dictionary is guaranteed to be JSON
serializable so you can return this value from a chalice view.

Response

	
class Response(body, headers=None, status_code=200)

	A class that represents the response for the view function. You
can optionally return an instance of this class from a view function if you
want complete control over the returned HTTP response.

from chalice import Chalice, Response

app = Chalice(app_name='custom-response')

@app.route('/')
def index():
 return Response(body='hello world!',
 status_code=200,
 headers={'Content-Type': 'text/plain'})

New in version 0.6.0.

	
body

	The HTTP response body to send back. This value must be a string.

	
headers

	An optional dictionary of HTTP headers to send back. This is a dictionary
of header name to header value, e.g {'Content-Type': 'text/plain'}

	
status_code

	The integer HTTP status code to send back in the HTTP response.

Authorization

Each of these classes below can be provided using the authorizer argument
for an @app.route(authorizer=...) call:

authorizer = CognitoUserPoolAuthorizer(
 'MyPool', header='Authorization',
 provider_arns=['arn:aws:cognito:...:userpool/name'])

@app.route('/user-pools', methods=['GET'], authorizer=authorizer)
def authenticated():
 return {"secure": True}

	
class CognitoUserPoolAuthorizer(name, provider_arns, header='Authorization')

	
New in version 0.8.1.

	
name

	The name of the authorizer.

	
provider_arns

	The Cognito User Pool arns to use.

	
header

	The header where the auth token will be specified.

	
class IAMAuthorizer

	
New in version 0.8.3.

	
class CustomAuthorizer(name, authorizer_uri, ttl_seconds, header='Authorization')

	
New in version 0.8.1.

	
name

	The name of the authorizer.

	
authorizer_uri

	The URI of the lambda function to use for the custom authorizer. This
usually has the form
arn:aws:apigateway:{region}:lambda:path/2015-03-31/functions/{lambda_arn}/invocations.

	
ttl_seconds

	The number of seconds to cache the returned policy from a custom
authorizer.

	
header

	The header where the auth token will be specified.

Built-in Authorizers

These classes are used when defining built-in authorizers in Chalice.

	
class AuthRequest(auth_type, token, method_arn)

	An instance of this class is passed as the first argument
to an authorizer defined via @app.authorizer(). You
generally do not instantiate this class directly.

	
auth_type

	The type of authentication

	
token

	The authorization token. This is usually the value of the
Authorization header.

	
method_arn

	The ARN of the API gateway being authorized.

	
class AuthResponse(routes, principal_id, context=None)

	
	
routes

	A list of authorized routes. Each element in the list
can either by a string route such as “/foo/bar” or
an instance of AuthRoute. If you specify the URL as
a string, then all supported HTTP methods will be authorized.
If you want to specify which HTTP methods are allowed, you
can use AuthRoute. If you want to specify that all
routes and HTTP methods are supported you can use the
wildcard value of "*": AuthResponse(routes=['*'], ...)

	
principal_id

	The principal id of the user.

	
context

	An optional dictionary of key value pairs. This dictionary
will be accessible in the app.current_request.context
in all subsequent authorized requests for this user.

	
class AuthRoute(path, methods)

	This class be used in the routes attribute of a
AuthResponse instance to get fine grained control
over which HTTP methods are allowed for a given route.

	
path

	The allowed route specified as a string

	
methods

	A list of allowed HTTP methods.

APIGateway

	
class APIGateway

	This class is used to control
how API Gateway interprets Content-Type headers in both requests and
responses.

There is a single instance of this class attached to each
Chalice object under the api attribute.

	
default_binary_types

	The value of default_binary_types are the Content-Types that are
considered binary by default. This value should not be changed, instead
you should modify the binary_types list to change the behavior of a
content type. Its value is: application/octet-stream,
application/x-tar, application/zip, audio/basic,
audio/ogg, audio/mp4, audio/mpeg, audio/wav,
audio/webm, image/png, image/jpg, image/jpeg,
image/gif, video/ogg, video/mpeg, video/webm.

	
binary_types

	The value of binary_types controls how API Gateway interprets
requests and responses as detailed below.

If an incoming request has a Content-Type header value that is
present in the binary_types list it will be assumed that its body is
a sequence of raw bytes. You can access these bytes by accessing the
app.current_request.raw_body property.

If an outgoing response from Chalice has a header Content-Type
that matches one of the binary_types its body must be a bytes
type object. It is important to note that originating request must have
the Accept header for the same type as the Content-Type on the
response. Otherwise a 400 error will be returned.

This value can be modified to change what types API Gateway treats as
binary. The easiest way to do this is to simply append new types to
the list.

app.api.binary_types.append('application/my-binary-data')

Keep in mind that there can only be a total of 25 binary types at a time
and Chalice by default has a list of 16 types. It is recommended if you
are going to make extensive use of binary types to reset the list to
the exact set of content types you will be using. This can easily be
done by reassigning the whole list.

app.api.binary_types = [
 'application/octet-stream',
 'application/my-binary-data',
]

Implementation Note: API Gateway and Lambda communicate through a
JSON event which is encoded using UTF-8. The raw bytes are
temporarily encoded using base64 when being passed between API Gateway
and Lambda. In the worst case this encoding can cause the binary body
to be inflated up to 4/3 its original size. Lambda only accepts an
event up to 6mb, which means even if your binary data was not quite
at that limit, with the base64 encoding it may exceed that limit. This
will manifest as a 502 Bad Gateway error.

CORS

	
class CORSConfig(allow_origin='*', allow_headers=None, expose_headers=None, max_age=None, allow_credentials=None)

	CORS configuration to attach to a route.

from chalice import CORSConfig
cors_config = CORSConfig(
 allow_origin='https://foo.example.com',
 allow_headers=['X-Special-Header'],
 max_age=600,
 expose_headers=['X-Special-Header'],
 allow_credentials=True
)

@app.route('/custom_cors', methods=['GET'], cors=cors_config)
def supports_custom_cors():
 return {'cors': True}

New in version 0.8.1.

	
allow_origin

	The value of the Access-Control-Allow-Origin to send in the response.
Keep in mind that even though the Access-Control-Allow-Origin header
can be set to a string that is a space separated list of origins, this
behavior does not work on all clients that implement CORS. You should only
supply a single origin to the CORSConfig object. If you need to supply
multiple origins you will need to define a custom handler for it that
accepts OPTIONS requests and matches the Origin header against a
whitelist of origins. If the match is successful then return just their
Origin back to them in the Access-Control-Allow-Origin header.

	
allow_headers

	The list of additional allowed headers. This list is added to list of
built in allowed headers: Content-Type, X-Amz-Date,
Authorization, X-Api-Key, X-Amz-Security-Token.

	
expose_headers

	A list of values to return for the Access-Control-Expose-Headers:

	
max_age

	The value for the Access-Control-Max-Age

	
allow_credentials

	A boolean value that sets the value of
Access-Control-Allow-Credentials.

Event Sources

New in version 1.0.0b1.

	
class Rate(value, unit)

	An instance of this class can be used as the expression value
in the Chalice.schedule() method:

@app.schedule(Rate(5, unit=Rate.MINUTES))
def handler(event):
 pass

Examples:

Run every minute.
Rate(1, unit=Rate.MINUTES)

Run every 2 hours.
Rate(2, unit=Rate.HOURS)

	
value

	An integer value that presents the amount of time to wait
between invocations of the scheduled event.

	
unit

	The unit of the provided value attribute. This can be
either Rate.MINUTES, Rate.HOURS, or Rate.DAYS.

	
MINUTES, HOURS, DAYS

	These values should be used for the unit attribute.

	
class Cron(minutes, hours, day_of_month, month, day_of_week, year)

	An instance of this class can be used as the expression value
in the Chalice.schedule() method.

@app.schedule(Cron(15, 10, '?', '*', '6L', '2002-2005'))
def handler(event):
 pass

It provides more capabilities than the Rate
class. There are a few limits:

	You can’t specify day_of_month and day_of_week fields in
the same Cron expression. If you specify a value in one of the
fields, you must use a ? in the other.

	Cron expressions that lead to rates faster than 1 minute are not
supported.

For more information, see the API
docs page [https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html#CronExpressions].

Examples:

Run at 10:00am (UTC) every day.
Cron(0, 10, '*', '*', '?', '*')

Run at 12:15pm (UTC) every day.
Cron(15, 12, '*', '*', '?', '*')

Run at 06:00pm (UTC) every Monday through Friday.
Cron(0, 18, '?', '*', 'MON-FRI', '*')

Run at 08:00am (UTC) every 1st day of the month.
Cron(0, 8, 1, '*', '?', '*')

Run every 15 minutes.
Cron('0/15', '*', '*', '*', '?', '*')

Run every 10 minutes Monday through Friday.
Cron('0/10', '*', '?', '*', 'MON-FRI', '*')

Run every 5 minutes Monday through Friday between
08:00am and 5:55pm (UTC).
Cron('0/5', '8-17', '?', '*', 'MON-FRI', '*')

	
class CloudWatchEvent

	This is the input argument for a scheduled event.

@app.schedule('rate(1 hour)')
def every_hour(event: CloudWatchEvent):
 pass

In the code example above, the event argument is of
type CloudWatchEvent, which will have the following
attributes.

	
version

	By default, this is set to 0 (zero) in all events.

	
account

	The 12-digit number identifying an AWS account.

	
region

	Identifies the AWS region where the event originated.

	
detail

	For scheduled events, this will be an empty dictionary.

	
detail_type

	For scheduled events, this value will be "Scheduled Event".

	
source

	Identifies the service that sourced the event. All events sourced from
within AWS will begin with “aws.” Customer-generated events can have any
value here as long as it doesn’t begin with “aws.” We recommend the use
of java package-name style reverse domain-name strings.

For scheduled events, this will be aws.events.

	
time

	The event timestamp, which can be specified by the service originating
the event. If the event spans a time interval, the service might choose
to report the start time, so this value can be noticeably before the time
the event is actually received.

	
event_id

	A unique value is generated for every event. This can be helpful in
tracing events as they move through rules to targets, and are processed.

	
resources

	This JSON array contains ARNs that identify resources that are involved
in the event. Inclusion of these ARNs is at the discretion of the
service.

For scheduled events, this will include the ARN of the CloudWatch
rule that triggered this event.

	
context

	A Lambda context object [https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html]
that is passed to the handler by AWS Lambda. This is useful if you need
the AWS request ID for tracing, or any other data in the context object.

	
to_dict()

	Return the original event dictionary provided
from Lambda. This is useful if you need direct
access to the lambda event, for example if a
new key is added to the lambda event that has not
been mapped as an attribute to the CloudWatchEvent
object. Example:

{'account': '123457940291',
 'detail': {},
 'detail-type': 'Scheduled Event',
 'id': '12345678-b9f1-4667-9c5e-39f98e9a6113',
 'region': 'us-west-2',
 'resources': ['arn:aws:events:us-west-2:123457940291:rule/testevents-dev-every_minute'],
 'source': 'aws.events',
 'time': '2017-06-30T23:28:38Z',
 'version': '0'}

	
class S3Event

	This is the input argument for an S3 event.

@app.on_s3_event(bucket='mybucket')
def event_handler(event: S3Event):
 app.log.info("Event received for bucket: %s, key %s",
 event.bucket, event.key)

In the code example above, the event argument is of
type S3Event, which will have the following
attributes.

	
bucket

	The S3 bucket associated with the event.

	
key

	The S3 key name associated with the event.
The original key name in the S3 event payload
is URL encoded. However, this key attribute automatically
URL decodes the key name for you. If you need
access to the original URL encoded key name, you can
access it through the to_dict() method.

	
context

	A Lambda context object [https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html]
that is passed to the handler by AWS Lambda. This is useful if you need
the AWS request ID for tracing, or any other data in the context object.

	
to_dict()

	Return the original event dictionary provided
from Lambda. This is useful if you need direct
access to the lambda event, for example if a
new key is added to the lambda event that has not
been mapped as an attribute to the S3Event
object. Note that this event is not modified in any way.
This means that the key name of the S3 object is URL
encoded, which is the way that S3 sends this value
to Lambda.

	
class SNSEvent

	This is the input argument for an SNS event handler.

@app.on_sns_message(topic='mytopic')
def event_handler(event: SNSEvent):
 app.log.info("Message received with subject: %s, message: %s",
 event.subject, event.message)

In the code example above, the event argument is of
type SNSEvent, which will have the following
attributes.

	
subject

	The subject of the SNS message that was published.

	
message

	The string value of the SNS message that was published.

	
context

	A Lambda context object [https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html]
that is passed to the handler by AWS Lambda. This is useful if you need
the AWS request ID for tracing, or any other data in the context object.

	
to_dict()

	Return the original event dictionary provided
from Lambda. This is useful if you need direct
access to the lambda event, for example if a
new key is added to the lambda event that has not
been mapped as an attribute to the SNSEvent
object.

	
class SQSEvent

	This is the input argument for an SQS event handler.

@app.on_sqs_message(queue='myqueue')
def event_handler(event: SQSEvent):
 app.log.info("Event: %s", event.to_dict())

In the code example above, the event argument is of
type SQSEvent. An SQSEvent can have multiple
sqs messages associated with it. To access the multiple
messages, you can iterate over the SQSEvent.

	
__iter__()

	Iterate over individual SQS messages associated with
the event. Each element in the iterable is of type
SQSRecord.

	
context

	A Lambda context object [https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html]
that is passed to the handler by AWS Lambda. This is useful if you need
the AWS request ID for tracing, or any other data in the context object.

	
to_dict()

	Return the original event dictionary provided
from Lambda. This is useful if you need direct
access to the lambda event, for example if a
new key is added to the lambda event that has not
been mapped as an attribute to the SQSEvent
object.

	
class SQSRecord

	Represents a single SQS record within an SQSEvent.

	
body

	The body of the SQS message.

	
receipt_handle

	The receipt handle associated with the message. This is useful
if you need to manually delete an SQS message to account for
partial failures.

	
context

	A Lambda context object [https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html]
that is passed to the handler by AWS Lambda.

	
to_dict()

	Return the original dictionary associated with the given
message. This is useful if you need direct
access to the lambda event.

Blueprints

	
class Blueprint(import_name)

	An object used for grouping related handlers together.
This is primarily used as a mechanism for organizing your lambda
handlers. Any decorator methods defined in the Chalice
object are also defined on a Blueprint object. You can register
a blueprint to a Chalice app using the Chalice.register_blueprint()
method.

The import_name is the module in which the Blueprint is defined.
It is used to construct the appropriate handler string when creating
the Lambda functions associated with a Blueprint. This is typically
the __name__ attribute:mybp = Blueprint(__name__).

See Blueprints for more information.

In ./app.py

from chalice import Chalice
from chalicelib import myblueprint

app = Chalice(app_name='blueprints')
app.register_blueprint(myblueprint)

In chalicelib/myblueprint.py

from chalice import Blueprint

myblueprint = Blueprint(__name__)

@myblueprint.route('/')
def index():
 return {'hello': 'world'}

Upgrade Notes

This document provides additional documentation
on upgrading your version of chalice. If you’re just
interested in the high level changes, see the
CHANGELOG.rst [https://github.com/aws/chalice/blob/master/CHANGELOG.rst])
file.

1.2.0

This release features a rewrite of the Chalice deployer
(#604 [https://github.com/aws/chalice/issues/604]).
This is a backwards compatible change, and should not have any
noticeable changes with deployments with the exception of
fixing deployer bugs (e.g. https://github.com/aws/chalice/issues/604).
This code path affects the chalice deploy, chalice delete, and
chalice package commands.

While this release is backwards compatible, you will notice several
changes when you upgrade to version 1.2.0.

The output of chalice deploy has changed in order to give
more details about the resources it creates along with a more detailed
summary at the end:

$ chalice deploy
Creating deployment package.
Creating IAM role: myapp-dev
Creating lambda function: myapp-dev-foo
Creating lambda function: myapp-dev
Creating Rest API
Resources deployed:
 - Lambda ARN: arn:aws:lambda:us-west-2:12345:function:myapp-dev-foo
 - Lambda ARN: arn:aws:lambda:us-west-2:12345:function:myapp-dev
 - Rest API URL: https://abcd.execute-api.us-west-2.amazonaws.com/api/

Also, the files used to store deployed values has changed. These files are
used internally by the chalice deploy/delete commands and you typically
do not interact with these files directly. It’s mentioned here in case
you notice new files in your .chalice directory. Note that these files
are not part of the public interface of Chalice and are documented here
for completeness and to help with debugging issues.

In versions < 1.2.0, the value of deployed resources was stored in
.chalice/deployed.json and looked like this:

{
 "dev": {
 "region": "us-west-2",
 "api_handler_name": "demoauth4-dev",
 "api_handler_arn": "arn:aws:lambda:us-west-2:123:function:myapp-dev",
 "rest_api_id": "abcd",
 "lambda_functions": {
 "myapp-dev-foo": {
 "type": "pure_lambda",
 "arn": "arn:aws:lambda:us-west-2:123:function:myapp-dev-foo"
 }
 },
 "chalice_version": "1.1.1",
 "api_gateway_stage": "api",
 "backend": "api"
 },
 "prod": {...}
}

In version 1.2.0, the deployed resources are split into multiple files, one
file per chalice stage. These files are in the
.chalice/deployed/<stage.json>, so if you had a dev and a prod chalice
stage you’d have .chalice/deployed/dev.json and
.chalice/deployed/prod.json. The schema has also changed and looks
like this:

$ cat .chalice/deployed/dev.json
{
 "schema_version": "2.0",
 "resources": [
 {
 "role_name": "myapp-dev",
 "role_arn": "arn:aws:iam::123:role/myapp-dev",
 "name": "default-role",
 "resource_type": "iam_role"
 },
 {
 "lambda_arn": "arn:aws:lambda:us-west-2:123:function:myapp-dev-foo",
 "name": "foo",
 "resource_type": "lambda_function"
 },
 {
 "lambda_arn": "arn:aws:lambda:us-west-2:123:function:myapp-dev",
 "name": "api_handler",
 "resource_type": "lambda_function"
 },
 {
 "name": "rest_api",
 "rest_api_id": "abcd",
 "rest_api_url": "https://abcd.execute-api.us-west-2.amazonaws.com/api",
 "resource_type": "rest_api"
 }
],
 "backend": "api"
}

When you run chalice deploy for the first time after upgrading to version
1.2.0, chalice will automatically converted .chalice/deployed.json over to
the format as you deploy a given stage.

Warning

Once you upgrade to 1.2.0, chalice will only update the new
.chalice/deployed/<stage>.json. This means you cannot downgrade
to earlier versions of chalice unless you manually update
.chalice/deployed.json as well.

The chalice package command has also been updated to use the
deployer. This results in several changes compared to the previous
version:

	Pure lambdas are supported

	Scheduled events are supported

	Parity between the behavior of chalice deploy and chalice package

As part of this change, the CFN resource names have been updated
to use CamelCase names. Previously, chalice converted your
python function names to CFN resource names by removing all
non alphanumeric characters and appending an md5 checksum,
e.g my_function -> myfunction3bfc. With this new packager
update, the resource name would be converted as
my_function -> MyFunction. Note, the Outputs section
renames unchanged in order to preserve backwards compatibility.
In order to fix parity issues with chalice deploy and
chalice package, we now explicitly create an IAM role
resource as part of the default configuration.

1.0.0b2

The url parameter names and the function argument names must match.
Previously, the routing code would use positional args handler(*args)
to invoke a view function. In this version, kwargs are now used instead:
handler(**view_args). For example, this code will no longer work:

@app.route('/{a}/{b}')
def myview(first, second)
 return {}

The example above must be updated to:

@app.route('/{a}/{b}')
def myview(a, b)
 return {}

Now that functions are invoked with kwargs, the order doesn’t matter. You may
also write the above view function as:

@app.route('/{a}/{b}')
def myview(b, a)
 return {}

This was done to have consistent behavior with other web frameworks such as
Flask.

1.0.0b1

The Chalice.define_authorizer method has been removed. This has been
deprecated since v0.8.1. See Authorization for updated
information on configuring authorizers in Chalice as well as the
original deprecation notice in the 0.8.1 upgrade notes.

The optional deprecated positional parameter in the chalice deploy command
for specifying the API Gateway stage has been removed. If you want to
specify the API Gateway stage, you can use the --api-gateway-stage
option in the chalice deploy command:

Deprecated and removed in 1.0.0b1
$ chalice deploy prod

Equivalent and updated way to specify an API Gateway stage:
$ chalice deploy --api-gateway-stage prod

0.9.0

The 0.9.0 release changed the type of app.current_request.raw_body to
always be of type bytes(). This only affects users that were using
python3. Previously you would get a type str(), but with the introduction
of binary content type support [https://github.com/aws/chalice/issues/348], the raw_body attribute
was made to consistently be of type bytes().

0.8.1

The 0.8.1 changed the preferred way of specifying authorizers for view
functions. You now specify either an instance of
chalice.CognitoUserPoolAuthorizer or chalice.CustomAuthorizer
to an @app.route() function using the authorizer argument.

Deprecated:

@app.route('/user-pools', methods=['GET'], authorizer_name='MyPool')
def authenticated():
 return {"secure": True}

app.define_authorizer(
 name='MyPool',
 header='Authorization',
 auth_type='cognito_user_pools',
 provider_arns=['arn:aws:cognito:...:userpool/name']
)

Equivalent, and preferred way

from chalice import CognitoUserPoolAuthorizer

authorizer = CognitoUserPoolAuthorizer(
 'MyPool', header='Authorization',
 provider_arns=['arn:aws:cognito:...:userpool/name'])

@app.route('/user-pools', methods=['GET'], authorizer=authorizer)
def authenticated():
 return {"secure": True}

The define_authorizer is still available, but is now deprecated and will
be removed in future versions of chalice. You can also use the new
authorizer argument to provider a CustomAuthorizer:

from chalice import CustomAuthorizer

authorizer = CustomAuthorizer(
 'MyCustomAuth', header='Authorization',
 authorizer_uri=('arn:aws:apigateway:region:lambda:path/2015-03-01'
 '/functions/arn:aws:lambda:region:account-id:'
 'function:FunctionName/invocations'))

@app.route('/custom-auth', methods=['GET'], authorizer=authorizer)
def authenticated():
 return {"secure": True}

0.7.0

The 0.7.0 release adds several major features to chalice. While the majority
of these features are introduced in a backwards compatible way, there are a few
backwards incompatible changes that were made in order to support these new
major features.

Separate Stages

Prior to this version, chalice had a notion of a “stage” that corresponded to
an API gateway stage. You can create and deploy a new API gateway stage by
running chalice deploy <stage-name>. In 0.7.0, stage support was been
reworked such that a chalice stage is a completely separate set of AWS
resources. This means that if you have two chalice stages, say dev and
prod, then you will have two separate sets of AWS resources, one set per
stage:

	Two API Gateway Rest APIs

	Two separate Lambda functions

	Two separate IAM roles

The Chalice Stages doc has more details on the new chalice stages
feature. This section highlights the key differences between the old stage
behavior and the new chalice stage functionality in 0.7.0. In order to ease
transition to this new model, the following changes were made:

	A new --stage argument was added to the deploy, logs, url,
generate-sdk, and package commands. If this value is specified
and the stage does not exist, a new chalice stage with that name will
be created for you.

	The existing form chalice deploy <stage-name> has been deprecated.
The command will still work in version 0.7.0, but a deprecation warning
will be printed to stderr.

	If you want the pre-existing behavior of creating a new API gateway stage
(while using the same Lambda function), you can use the
--api-gateway-stage argument. This is the replacement for the
deprecated form chalice deploy <stage-name>.

	The default stage if no --stage option is provided is dev. By
defaulting to a dev stage, the pre-existing behavior of not
specifying a stage name, e.g chalice deploy, chalice url, etc.
will still work exactly the same.

	A new stages key is supported in the .chalice/config.json. This
allows you to specify configuration specific to a chalice stage.
See the Configuration File doc for more information about stage
specific configuration.

	Setting autogen_policy to false will result in chalice looking
for a IAM policy file named .chalice/policy-<stage-name>.json.
Previously it would look for a file named .chalice/policy.json.
You can also explicitly set this value to
In order to ease transition, chalice will check for a
.chalice/policy.json file when depoying to the dev stage.
Support for .chalice/policy.json will be removed in future
versions of chalice and users are encouraged to switch to the
stage specific .chalice/policy-<stage-name>.json files.

See the Chalice Stages doc for more details on the new chalice stages
feature.

Note, the AWS resource names it creates now have the form
``<app-name>-<stage-name>``, e.g. ``myapp-dev``, ``myapp-prod``.

We recommend using the new stage specific resource names. However, If you
would like to use the existing resource names for a specific stage, you can
create a .chalice/deployed.json file that specifies the existing values:

{
 "dev": {
 "backend": "api",
 "api_handler_arn": "lambda-function-arn",
 "api_handler_name": "lambda-function-name",
 "rest_api_id": "your-rest-api-id",
 "api_gateway_stage": "dev",
 "region": "your region (e.g us-west-2)",
 "chalice_version": "0.7.0",
 }
}

This file is discussed in the next section.

Deployed Values

In version 0.7.0, the way deployed values are stored and retrieved
has changed. In prior versions, only the lambda_arn was saved,
and its value was written to the .chalice/config.json file.
Any of other deployed values that were needed (for example the
API Gateway rest API id) was dynamically queried by assuming the
resource names matches the app name. In this version of chalice,
a separate .chalice/deployed.json file is written on every
deployement which contains all the resources that have been created.
While this should be a transparent change, you may noticed
issues if you run commands such as chalice url and chalice logs
without first deploying. To fix this issue, run chalice deploy
and version 0.7.0 of chalice so a .chalice/deployed.json will
be created for you.

Authorizer Changes

The ``authorizer_id`` and ``authorization_type`` args are
no longer supported in ``@app.route(…)`` calls.

They have been replaced with an authorizer_name parameter and an
app.define_authorizer method.

This version changed the internals of how an API gateway REST API is created.
Prior to 0.7.0, the AWS SDK for Python was used to make the appropriate service
API calls to API gateway include create_rest_api and put_method /
put_method_response for each route. In version 0.7.0, this internal
mechanism was changed to instead generate a swagger document. The rest api is
then created or updated by calling import_rest_api or put_rest_api and
providing the swagger document. This simplifies the internals and also unifies
the code base for the newly added chalice package command (which uses a
swagger document internally). One consequence of this change is that the
entire REST API must be defined in the swagger document. With the previous
authorizer_id parameter, you would create/deploy a rest api, create your
authorizer, and then provide that authorizer_id in your @app.route
calls. Now they must be defined all at once in the app.py file:

app = chalice.Chalice(app_name='demo')

@app.route('/auth-required', authorizer_name='MyUserPool')
def foo():
 return {}

app.define_authorizer(
 name='MyUserPool',
 header='Authorization',
 auth_type='cognito_user_pools',
 provider_arns=['arn:aws:cognito:...:userpool/name']
)

0.6.0

This version changed how the internals of how API gateway resources are created
by chalice. The integration type changed from AWS to AWS_PROXY. This
was to enable additional functionality, notable to allows users to provide
non-JSON HTTP responses and inject arbitrary headers to the HTTP responses.
While this change to the internals is primarily internal, there are several
user-visible changes.

	Uncaught exceptions with app.debug = False (the default value)
will result in a more generic InternalServerError error. The
previous behavior was to return a ChaliceViewError.

	When you enabled debug mode via app.debug = True, the HTTP
response will contain the python stack trace as the entire request
body. This is to improve the readability of stack traces.
For example:

$ http https://endpoint/dev/
HTTP/1.1 500 Internal Server Error
Content-Length: 358
Content-Type: text/plain

Traceback (most recent call last):
 File "/var/task/chalice/app.py", line 286, in __call__
 response = view_function(*function_args)
 File "/var/task/app.py", line 12, in index
 return a()
 File "/var/task/app.py", line 16, in a
 return b()
 File "/var/task/app.py", line 19, in b
 raise ValueError("Hello, error!")
ValueError: Hello, error!

	Content type validation now has error responses that match the same error
response format used for other chalice built in responses. Chalice was
previously relying on API gateway to perform the content type validation.
As a result of the AWS_PROXY work, this logic has moved into the chalice
handler and now has a consistent error response:

$ http https://endpoint/dev/ 'Content-Type: text/plain'
HTTP/1.1 415 Unsupported Media Type
Content-Type: application/json

{
 "Code": "UnsupportedMediaType",
 "Message": "Unsupported media type: text/plain"
}

	The keys in the app.current_request.to_dict() now match the casing used
by the AWS_PPROXY lambda integration, which are lowerCamelCased.
This method is primarily intended for introspection purposes.

Index

 _
 | A
 | B
 | C
 | D
 | E
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

_

 	
 	__iter__() (SQSEvent method)

A

 	
 	account (CloudWatchEvent attribute)

 	allow_credentials (CORSConfig attribute)

 	allow_headers (CORSConfig attribute)

 	allow_origin (CORSConfig attribute)

 	api (Chalice attribute)

 	APIGateway (built-in class)

 	
 	auth_type (AuthRequest attribute)

 	authorizer() (Chalice method)

 	authorizer_uri (CustomAuthorizer attribute)

 	AuthRequest (built-in class)

 	AuthResponse (built-in class)

 	AuthRoute (built-in class)

B

 	
 	binary_types (APIGateway attribute)

 	Blueprint (built-in class)

 	
 	body (Response attribute)

 	(SQSRecord attribute)

 	bucket (S3Event attribute)

C

 	
 	Chalice (built-in class)

 	CloudWatchEvent (built-in class)

 	CognitoUserPoolAuthorizer (built-in class)

 	context (AuthResponse attribute)

 	(CloudWatchEvent attribute)

 	(Request attribute)

 	(S3Event attribute)

 	(SNSEvent attribute)

 	(SQSEvent attribute)

 	(SQSRecord attribute)

 	
 	CORSConfig (built-in class)

 	Cron (built-in class)

 	current_request (Chalice attribute)

 	CustomAuthorizer (built-in class)

D

 	
 	debug (Chalice attribute)

 	default_binary_types (APIGateway attribute)

 	
 	detail (CloudWatchEvent attribute)

 	detail_type (CloudWatchEvent attribute)

E

 	
 	event_id (CloudWatchEvent attribute)

 	
 	expose_headers (CORSConfig attribute)

H

 	
 	header (CognitoUserPoolAuthorizer attribute)

 	(CustomAuthorizer attribute)

 	
 	headers (Request attribute)

 	(Response attribute)

I

 	
 	IAMAuthorizer (built-in class)

J

 	
 	json_body (Request attribute)

K

 	
 	key (S3Event attribute)

L

 	
 	lambda_context (Chalice attribute)

 	
 	lambda_function() (Chalice method)

M

 	
 	max_age (CORSConfig attribute)

 	message (SNSEvent attribute)

 	
 	method (Request attribute)

 	method_arn (AuthRequest attribute)

 	methods (AuthRoute attribute)

N

 	
 	name (CognitoUserPoolAuthorizer attribute)

 	(CustomAuthorizer attribute)

O

 	
 	on_s3_event() (Chalice method)

 	
 	on_sns_message() (Chalice method)

 	on_sqs_message() (Chalice method)

P

 	
 	path (AuthRoute attribute)

 	
 	principal_id (AuthResponse attribute)

 	provider_arns (CognitoUserPoolAuthorizer attribute)

Q

 	
 	query_params (Request attribute)

R

 	
 	Rate (built-in class)

 	raw_body (Request attribute)

 	receipt_handle (SQSRecord attribute)

 	region (CloudWatchEvent attribute)

 	register_blueprint() (Chalice method)

 	
 	Request (built-in class)

 	resources (CloudWatchEvent attribute)

 	Response (built-in class)

 	route() (Chalice method)

 	routes (AuthResponse attribute)

S

 	
 	S3Event (built-in class)

 	schedule() (Chalice method)

 	SNSEvent (built-in class)

 	source (CloudWatchEvent attribute)

 	
 	SQSEvent (built-in class)

 	SQSRecord (built-in class)

 	stage_vars (Request attribute)

 	status_code (Response attribute)

 	subject (SNSEvent attribute)

T

 	
 	time (CloudWatchEvent attribute)

 	to_dict() (CloudWatchEvent method)

 	(Request method)

 	(S3Event method)

 	(SNSEvent method)

 	(SQSEvent method)

 	(SQSRecord method)

 	
 	token (AuthRequest attribute)

 	ttl_seconds (CustomAuthorizer attribute)

U

 	
 	unit (Rate attribute)

 	
 	uri_params (Request attribute)

V

 	
 	value (Rate attribute)

 	
 	version (CloudWatchEvent attribute)

_static/down.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 AWS Chalice

 		
 Quickstart and Tutorial

 		
 Credentials

 		
 Creating Your Project

 		
 Deploying

 		
 Next Steps

 		
 Tutorial: URL Parameters

 		
 Tutorial: Error Messages

 		
 Tutorial: Additional Routing

 		
 Tutorial: Request Metadata

 		
 Tutorial: Request Content Types

 		
 Tutorial: Customizing the HTTP Response

 		
 Tutorial: GZIP compression for json

 		
 Tutorial: CORS Support

 		
 Tutorial: Policy Generation

 		
 Manually Providing Policies

 		
 Experimental Status

 		
 Tutorial: Using Custom Authentication

 		
 API Key

 		
 Using AWS IAM

 		
 Using Amazon Cognito User Pools

 		
 Using Custom Authorizers

 		
 Tutorial: Local Mode

 		
 Deleting Your App

 		
 Routing

 		
 Other Request Metadata

 		
 Views

 		
 View Function Parameters

 		
 View Function Return Values

 		
 Error Handling

 		
 Specifying HTTP Methods

 		
 Binary Content

 		
 Usage Recommendations

 		
 Configuration File

 		
 Stage Specific Configuration

 		
 Lambda Specific Configuration

 		
 Examples

 		
 IAM Roles and Policies

 		
 Environment Variables

 		
 Per Lambda Examples

 		
 Multifile Support

 		
 Logging

 		
 Examples

 		
 SDK Generation

 		
 Example

 		
 Example HTML File

 		
 Chalice Stages

 		
 Example

 		
 App Packaging

 		
 App Directories

 		
 3rd Party Packages

 		
 Examples

 		
 Cryptography Example

 		
 Python Version Support

 		
 Changing Python Runtime Versions

 		
 AWS CloudFormation Support

 		
 Considerations

 		
 Example

 		
 Authorization

 		
 AWS IAM Authorizer

 		
 Amazon Cognito User Pools

 		
 Custom Authorizers

 		
 Built-in Authorizers

 		
 Lambda Event Sources

 		
 Scheduled Events

 		
 S3 Events

 		
 SNS Events

 		
 SQS Events

 		
 Pure Lambda Functions

 		
 Blueprints

 		
 Example

 		
 Blueprint Registration

 		
 Advanced Example

 		
 Continuous Deployment (CD)

 		
 Usage example

 		
 CodeCommit repository

 		
 CodePipeline

 		
 CodeBuild build script

 		
 Deploying to beta stage

 		
 Extending

 		
 Experimental APIs

 		
 Opting-in to Experimental APIs

 		
 List of Experimental APIs

 		
 Chalice

 		
 Request

 		
 Response

 		
 Authorization

 		
 Built-in Authorizers

 		
 APIGateway

 		
 CORS

 		
 Event Sources

 		
 Blueprints

 		
 Upgrade Notes

 		
 1.2.0

 		
 1.0.0b2

 		
 1.0.0b1

 		
 0.9.0

 		
 0.8.1

 		
 0.7.0

 		
 Separate Stages

 		
 Deployed Values

 		
 Authorizer Changes

 		
 0.6.0

